a2 United States Patent

Bradley et al.

US009466054B1

US 9,466,054 B1
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(63)

(60)

(1)

(52)

(58)

INTEROPERABLE SYSTEMS AND
METHODS FOR PEER-TO-PEER SERVICE
ORCHESTRATION

Inventors: William Bradley, Newark, DE (US);
David Maher, Livermore, CA (US);
Gilles Boccon-Gibod, Los Altos, CA
us)

Intertrust Technologies Corporation,
Sunnyvale, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1741 days.

Appl. No.: 11/829,837
Filed: Jul. 27, 2007
Related U.S. Application Data

Continuation of application No. 11/804,667, filed on
May 17, 2007, which is a continuation of application
No. 10/863,551, filed on Jun. 7, 2004.

Provisional application No. 60/476,357, filed on Jun.
5, 2003, provisional application No. 60/504,524, filed
on Sep. 15, 2003.

Assignee:

Notice:

Int. CL.

G06Q 20/00 (2012.01)

G06Q 20/12 (2012.01)
(Continued)

U.S. CL

CPC G06Q 20/1235 (2013.01); GO6F 21/10

(2013.01); GO6F 2221/0759 (2013.01);

(Continued)

Field of Classification Search

CPC ... GOG6F 21/10, HO4L 2209/603; HO4L

2463/101; HO4L 9/0822; HO4L 63/0428,;

HO4L 9/0825; HO4L 2209/60;, HO4N

21/4627, HO4N 21/2541; HO4N 21/8355;

HO4N 21/4405; HO4N 7/1675; GO6Q

20/00-20/425; G06Q 10/10; GO6Q 30/00;

GO06Q 30/06; GO6Q 10/06; GO6Q 2220/18;

GO06Q 30/02; GO6Q 50/18; G06Q 50/184

USPC ittt 705/50-59
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,827,508 A 5/1989 Shear
4,977,594 A 12/1990 Shear
(Continued)
FOREIGN PATENT DOCUMENTS

CN 1116803 A 2/1996

CN 1274461 A 11/2000
(Continued)

OTHER PUBLICATIONS

Office Action dated Jan. 4, 2008 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

(Continued)

Primary Examiner — Mohammad A Nilforoush

(74) Attorney, Agent, or Firm — Finnegan, Henderson,
Farabow, Garrett & Dunner LLP

(57) ABSTRACT

Systems and methods are described for performing policy-
managed, peer-to-peer service orchestration in a manner that
supports the formation of self-organizing service networks
that enable rich media experiences. In one embodiment,
services are distributed across peer-to-peer communicating
nodes, and each node provides message routing and orches-
tration using a message pump and workflow collator. Dis-
tributed policy management of service interfaces helps to
provide trust and security, supporting commercial exchange
of value. Peer-to-peer messaging and workflow collation
allow services to be dynamically created from a heteroge-
neous set of primitive services. The shared resources are
services of many different types, using different service
interface bindings beyond those typically supported in a web
service deployments built on UDDI, SOAP, and WSDL. In
a preferred embodiment, a media services framework is
provided that enables nodes to find one another, interact,
exchange value, and cooperate across tiers of networks from
WANSs to PANs.

20 Claims, 34 Drawing Sheets

[‘USER INTERFACE

US 9,466,054 B1

Page 2

(51) Imt. ClL

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

HO4L 9/08 (2006.01)

HO4L 9/32 (2006.01)

GO6F 21/10 (2013.01)
(52) US. CL

CPC G060Q2220/10 (2013.01); GO6Q 2220/18

(2013.01); HO4L 9/0822 (2013.01); HO4L
9/0825 (2013.01); HO4L 9/0861 (2013.01);
HO4L 9/3263 (2013.01); HO4L 9/3271
(2013.01); HO4L 63/0428 (2013.01); HO4L
63/061 (2013.01); HO4L 63/08 (2013.01):
HO4L 63/0823 (2013.01); HO4L 67/16
(2013.01); HO4L 2209/603 (2013.01); HO4L
2463/101 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,050,213 A 9/1991 Shear
5,410,598 A 4/1995 Shear
5,414,845 A 5/1995 Behmet al. 718/104
5,530,235 A 6/1996 Stefik et al.
5,534,975 A 7/1996 Stefik et al.
5,629,980 A 5/1997 Stefik et al.
5,634,012 A 5/1997 Stefik et al.
5,638,443 A 6/1997 Stefik et al.
5,673,315 A 9/1997 Wolf
5,715,403 A 2/1998 Stefik
5,765,152 A 6/1998 Erickson
5,774,652 A 6/1998 Smith
5,825,883 A 10/1998 Archibald et al.
5,892,900 A 4/1999 Ginter et al.
5,910,987 A 6/1999 Ginter et al.
5,915,019 A 6/1999 Ginter et al.
5917912 A 6/1999 Ginter et al.
5,920,861 A 7/1999 Hall et al.
5,937,041 A 8/1999 Cardillo et al.
5,940,504 A 8/1999 Griswold
5,941,951 A 8/1999 Day et al.
5,943,422 A 8/1999 Van Wie et al.
5,949,876 A 9/1999 Ginter et al.
5,968,175 A 10/1999 Morishita et al.
5,982,891 A 11/1999 Ginter et al.
5,991,399 A 11/1999 Graunke et al.
5,999,949 A 12/1999 Crandall
6,006,332 A 12/1999 Rabne et al.
6,023,765 A 2/2000 Kuhn
6,044,469 A 3/2000 Horstmann
6,052,780 A 4/2000 Glover
6,112,181 A 8/2000 Shear et al.
6,119,108 A 9/2000 Holmes et al.
6,138,119 A 10/2000 Hall et al.
6,157,721 A 12/2000 Shear et al.
6,185,683 Bl 2/2001 Ginter et al.
6,188,995 Bl 2/2001 Garst et al.
6,223,291 Bl 4/2001 Puhl et al.
6,226,618 Bl 5/2001 Downs et al.
6,233,577 Bl 5/2001 Ramasubramani et al.
6,233,608 Bl 5/2001 Laursen et al.
6,237,786 Bl 5/2001 Ginter et al.
6,240,185 Bl 5/2001 Van Wie et al.
6,253,193 Bl 6/2001 Ginter et al.
6,292,569 Bl 9/2001 Shear et al.
6,363,488 Bl 3/2002 Ginter et al.
6,389,402 Bl 5/2002 Ginter et al.
6,427,140 Bl 7/2002 Ginter et al.
6,449,367 B2 9/2002 Van Wie et al.
6,618,484 Bl 9/2003 Van Wie et al.
6,640,304 B2 10/2003 Ginter et al.
6,658,568 B1 12/2003 Ginter et al.
6,668,325 Bl 12/2003 Collberg et al.
6,735,253 Bl 5/2004 Chang et al.

6,769,019
6,772,340
6,785,815
6,807,534
6,824,051
6,832,316
6,842,863
6,850,252
6,883,100
6,928,545
6,934,702
6,959,290
6,961,858
6,976,164
6,985,953
6,996,544
7,036,011
7,089,594
7,107,449
7,113,912
7,171,558
7,203,966
7,210,039
7,272,228
7,308,717
7,356,690
7,359,517
7,389,270
7,389,273
7,484,103
7,487,363
7,493,289
7,496,757
7,509,492
7,516,331
7,549,172
7,558,759
7,574,219
7,587,368
7,590,863
7,610,011
7,631,318
7,711,647
7,873,988
8,234,387
8,302,178
8,656,178
9,235,833
9,235,834
2001/0001147
2001/0033554
2001/0042043
2001/0051996
2002/0002674
2002/0010679
2002/0023214
2002/0044657
2002/0048369
2002/0059425
2002/0087859
2002/0108050
2002/0112171
2002/0143819
2002/0144108
2002/0144283
2002/0152173
2002/0157002
2002/0161996
2002/0164047
2002/0194081
2003/0009423
2003/0009681
2003/0023856
2003/0028488
2003/0037139
2003/0041239
2003/0046244
2003/0051134
2003/0055878

7/2004
8/2004
8/2004
10/2004
11/2004
12/2004
1/2005
2/2005
4/2005
8/2005
8/2005
10/2005
11/2005
12/2005
1/2006
2/2006
4/2006
8/2006
9/2006
9/2006
1/2007
4/2007
4/2007
9/2007
12/2007
4/2008
4/2008
6/2008
6/2008
1/2009
2/2009
2/2009
2/2009
3/2009
4/2009
6/2009
7/2009
8/2009
9/2009
9/2009
10/2009
12/2009
5/2010
1/2011
7/2012
10/2012
2/2014
1/2016
1/2016
5/2001
10/2001
11/2001
12/2001
1/2002
1/2002
2/2002
4/2002
4/2002
5/2002
7/2002
8/2002
8/2002
10/2002
10/2002
10/2002
10/2002
10/2002
10/2002
11/2002
12/2002
1/2003
1/2003
1/2003
2/2003
2/2003
2/2003
3/2003
3/2003
3/2003

Ferguson
Peinado et al.
Serret-Avila et al.
Erickson

Reddy

Sibert

Fox et al.
Hofiberg

Elley et al.

Litai et al.
Faybishenko et al. 705/51
Stefik et al.
Fransdonk

King et al.
Sandhu et al.
Sellars et al.coceeuenns 705/51
Grimes et al.
Lal et al.

Mont et al.
Stefik et al.
Mourad et al.
Abburi et al.
Rodgers et al.
Atkin et al.
Koved et al.
Benantar

Rowe

Stefik et al.
Irwin et al.

Woo et al.

Alve et al.
Verosub et al.
Abbott et al.
Boyen et al.

Jin et al.
Tokutani et al.
Valenzuela et al.
Rofheart et al.
Felsher

Lambert

Albrett

Cottrille et al.
Gunaseelan et al.
Issa et al.
Bradley et al.
Camiel

Foster et al.
Bradley et al.
Bradley et al.

Hutchison et al. 705/26
Ayyagari et al. 370/328
Shear et al.

Cooper et al.c........ 709/217
Grimes et al. 713/156
Felsher

Shear et al.

Asano et al.

Ginter et al.

Belfiore et al.

Weeks et al.

Raley et al.

Ginter et al.

Han et al.

Benantar

Headings et al. 725/109
Rudd

Messerges et al. 713/155
Koved et al.

Yuval
Perkowski
Wang et al.
Harada et al.
Horne et al.
Mohammed et al.
Shteyn
Shear et al.
Shear et al.
Gupta
Fletcher et al.

382/100
705/26

709/225

US 9,466,054 B1

Page 3

(56) References Cited 2005/0060560 Al 3/2005 Sibert

2005/0060584 Al 3/2005 Ginter et al.

U.S. PATENT DOCUMENTS 2005/0078822 Al 4/2005 Shavit et al.

2005/0086501 Al 4/2005 Woo et al.
2003/0061404 Al 3/2003 Atwal et al. 2005/0102513 Al 52005 Alve
2003/0065956 Al 4/2003 Belapurkar et al. 2005/0108555 Al 52005 Sibert
2003/0069748 Al 4/2003 Shear et al. 2005/0108707 Al 52005 Taylor et al.
2003/0069749 Al 4/2003 Shear et al. 2005/0119977 Al 6/2005 Raciborski
2003/0078891 Al 4/2003 Capitant 2005/0177516 Al 8/2005 Vandewater et al.
2003/0079133 Al 4/2003 Breiter et al. 2005/0192902 AL 9/2005 Williams
2003/0084003 Al 5/2003 Pinkas et al. 2005/0204391 Al 9/2005 Hl_lnleth et al.
2003/0084172 Al 5/2003 deloung et al. 709/229 2005/0228858 Al 10/2005 Mizutani et al.
2003/0105721 Al 6/2003 Ginter et al. 2005/0234735 Al 10/2005 Williams
5003/0105864 Al 6/2003 Mulligan et al 2005/0235361 Al 10/2005 Alkove et al.
2003/0126086 Al 7/2003 Safadi 2005/0262520 Al 11/2005 Burnett et al.
2003/0131251 Al 7/2003 Fetkovich 2005/0262568 Al 11/2005 Hansen et al.
2003/0135628 Al 7/2003 Fletcher et al. 2005/0273629 Al 12/2005 Abrams et al.
2003/0140119 Al* 7/2003 Acharya et al. 709/219 2005/0278256 Al 12/2005 Vandewater et al.
2003/0144859 Al 7/2003 Hsu ef al. 2005/0278259 Al 12/2005 Gunaseelan et al.
2003/0145044 A1 7/2003 Raivisto et al. 2005/0289653 Al 12/2005 Darling et al.
2003/0145093 Al 7/2003 Oren et al. 2006/0015580 Al 1/2006 Gabriel et al.
2003/0159033 Al 8/2003 Ishiguro 2006/0020784 Al 1/2006 Jonker et al.
2003/0163431 Al 82003 Ginter et al. 2006/0021065 Al 1/2006 Kamperman et al.
20030167236 Al /2003 Stefk et al 2006/0036554 Al 2/2006 Schrock et al.
2003/0172127 Al 9/2003 Northrup et al. 709/219 2006/0041642 A1 2/2006 Rosner et al.
2003/0177187 Al 9/2003 Levine et al. 2006/0050870 Al 3/2006 Kimmel et al.
2003/0182235 Al 9/2003 Wang ef al. 2006/0129818 Al 6/2006 Kim et al.
2003/0184431 Al 10/2003 Lundkvist 2006/0136718 Al 6/2006 Moreillon
2003/0194093 Al 10/2003 Evans et al. 2006/0150257 Al 7/2006 Leung et al.
2003/0204645 Al 10/2003 Sharma et al. 2006/0173985 Al 82006 Moore
2003/0207687 Al 11/2003 Svedevall et al. 455/436 2006/0174194 Al 82006 Miyazawa
2003/0220835 Al 11/2003 Barnes 2006/0248340 Al 11/2006 Lee et al.
2003/0220880 Al 11/2003 Lao et al. 2006/0294580 Al 12/2006 Yeh
2003/0226012 Al* 12/2003 Asokan et al. 713/156 2007/0083757 Al 4/2007 Nakano et al.
2003/0236978 Al 12/2003 Evans et al. 2007/0098162 A1 52007 Shin
2004/0003139 Al 1/2004 Cottrille et al. 2007/0192480 Al 82007 Han et al.
2004/0003270 Al 1/2004 Bourne et al. 2007/0198859 Al 82007 Harada et al.
2004/0003398 Al 1/2004 Donian et al. 2007/0300070 Al 12/2007 SheI_l-Orr et al.
2004/0024688 Al 2/2004 DBietal. 2008/0133417 Al 6/2008 Robinson
2004/0054630 Al 3/2004 Ginter et al. 2009/0007198 Al 1/2009 Lavender et al.
2004/0054894 Al 3/2004 T.ambert 2009/0031038 Al 1/2009 Shukla et al.
2004/0054912 Al 3/2004 Adent et al. 2009/0112867 Al 42009 Roy et al.
2004/0059951 Al 3/2004 Pinkas et al. 2010/0070774 Al 3/2010 Bradley et al.
2004/0073813 Al 4/2004 Pinkas et al.
2004/0083262 Al 4/2004 Trantow FOREIGN PATENT DOCUMENTS
2004/0088175 Al 5/2004 Messerges et al.
2004/0088541 Al 5/2004 Messerges et al.
2004/0098580 Al 5/2004 DeTreville N 10 A 92002
2004/0107356 Al 6/2004 Shamoon et al. N 101216371 A 7/2008
2004/0107368 Al 6/2004 Colvin N 100536559 C 9/2000
2004/0123104 Al 6/2004 Boyen et al. Ep ey g
2004/0123129 Al 6/2004 Ginter et al. Ep 0840194 A2 €/1998
2004/0128499 Al 7/2004 Peterka et al. 713/155 EP 1191 422 B2 3/2002
2004/0133793 Al 7/2004 Ginter et al. Ep 1724699 1112006
2004/0143546 Al 7/2004 Wood et al.ccevenrnn. 705/40 JP 2001-290724 10/2001
2004/0143736 AL 7/2004 Cross et al. P 3002.207637 A 7/2002
2004/0158709 Al /2004 Narin et al. P J003.122635 A 42003
2004/0162870 Al 82004 Matsuzaki et al. P 3004987904 10/2004
2004/0166839 Al /2004 Okkonen et al. P 2005.515724 A 52005
2004/0205765 Al 10/2004 Beringer et al. P 2007-068302 A 3/2007
2004/0216127 Al 10/2004 Datta et al. 719/313 JP 2009-026013 A 2/2009
2004/0249768 Al 12/2004 Kontio et al. P 3009.176253 A /2009
2004/0254851 Al 12/2004 Himeno et al. P 2012-53913 Py
2004/0267965 Al 12/2004 Vasudevan et al. W 1229559 3/2005
2005/0004875 Al 1/2005 Kontio et al. W 200512592 A 4/2005
2005/0008163 Al 1/2005 Leser et al. WO WO 96/27155 9/1996
2005/0022227 Al 1/2005 Shen et al. WO WO 97/41654 11/1997
2005/0027871 Al 2/2005 Bradley et al. WO WO 97/43761 11/1997

2005/0050332 Al 3/2005 Serret-Avila et al. WO WO 98/09209 3/1998

US 9,466,054 B1
Page 4

(56) References Cited
FOREIGN PATENT DOCUMENTS

WO WO 98/10381 3/1998
WO WO 98/37481 8/1998
WO WO 99/01815 1/1999
WO WO 99/5600 A2 2/1999
WO WO 99/24928 5/1999
WO WO 99/48296 9/1999
WO WO 00/75925 12/2000
WO WO 01/06374 1/2001
WO WO 01/09702 2/2001
WO WO 01/10076 2/2001
WO WO 01/80472 10/2001
WO WO 01/86462 Al 11/2001
WO WO 02/078238 10/2002
WO WO 02/084975 10/2002
WO WO 02/093290 11/2002
WO WO 03/034408 A2 4/2003
WO WO 03/044716 A2 5/2003
WO WO 2004/008297 Al 1/2004
WO WO 2004/027588 A2 4/2004
WO WO 2004/030311 Al 4/2004
WO WO 2004/038568 A2 5/2004
WO WO 2004/055650 Al 7/2004
WO WO 2004/059451 Al 7/2004
WO WO 2004/070538 A2 8/2004
WO WO 2005/017654 A2 2/2005
WO WO 2005/055009 A2 6/2005
WO WO 2006/118391 Al 11/2006
WO WO 2007/043015 A2 4/2007

OTHER PUBLICATIONS

Office Action dated Jun. 28, 2008 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Office Action dated Apr. 14, 2009 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Office Action dated Dec. 8, 2009 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Office Action dated Sep. 11, 2009 issued in related U.S. Appl. No.
11/804,667, filed May 17, 2007.

Office Action dated Jan. 6, 2010 issued in related U.S. Appl. No.
11/829,751, filed Jul. 27, 2007.

Office Action dated Feb. 3, 2010 issued in related U.S. Appl. No.
11/894,624, filed Aug. 20, 2007.

Office Action dated Oct. 23, 2008 issued in related U.S. Appl. No.
11/894,372, filed Aug. 20, 2007.

Office Action dated Jun. 10, 2009 issued in related U.S. Appl. No.
11/894,372, filed Aug. 20, 2007.

Office Action dated Nov. 13, 2009 issued in related U.S. Appl. No.
11/894,372, filed Aug. 20, 2007.

Office Action dated Nov. 14, 2008 issued in related U.S. Appl. No.
11/929,937, filed Oct. 30, 2007.

Examiner’s First Report dated Mar. 30, 2009 issued in related
Australian Application No. 2004264582.

English translation of Office Action issued Apr. 3, 2009 issued in
related Chinese Patent Application No. 200480021795.9.

English translation of Office Action issued Oct. 15, 2009 issued in
related Chinese Patent Application No. 200480021795.9.
Examination Report dated Sep. 17, 2009 issued in related European
Application No. 04776350.3.

English translation of Notice of Reasons for Rejection mailed Jul.
14, 2009 issued in related Japanese Patent Application No. 2006-
509076.

English translation of Notice of Grounds for Rejection issued Feb.
10, 2010 issued in related Korean Application No. 2005-7023383.
English translation of Official Action issued in related Eurasian
Application No. 200700510/27.

Curbera et al., “Using WSDL in a UDDI Registry, Version 1.07,”
UDDI Best Practice, found online at http://www.uddi.org/pubs/
wsdlbestpractices-V1.07-Open__20020521 .pdf, May 21, 2002.

Office Action dated May 12, 2010 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

International Search Report mailed Aug. 13, 2007, for International
Application No. PCT/US2006/040898, filed Oct. 18, 2006.
International Preliminary Report on Patentability issued Apr. 23,
2008, for International Application No. PCT/US2006/040898, filed
Oct. 18, 2006.

European Search Report and European Search Opinion completed
Jul. 2, 2009, for European Application No. EP09156631.5.
Hancke et al., “An RFID Distance Bounding Protocol,” Proceedings
of IEEE/Create-Net SecureComm 2005, [Online] URL:http://www.
rfidblog.org. uk/RFIDdistancebound-Securecomm?2005.pdf.

Office Action mailed Jan. 13, 2010 for U.S. Application No.
11/583,693, filed Oct. 18, 2006.

Office Action dated Apr. 19, 2010 issued in related U.S. Appl. No.
11/804,667, filed May 17, 2007.

Office Action mailed May 12, 2010 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Office Action mailed Mar. 31, 2010 issued in related U.S. Appl. No.
11/829,805, filed Jul. 27, 2007.

Office Action mailed Feb. 17, 2009 issued in related U.S. Appl. No.
11/583,671, filed Oct. 18, 2006.

Office Action mailed Nov. 24, 2009 issued in related U.S. Appl. No.
11/583,671, filed Oct. 18, 2006.

Bradley et al., “The NEMO P2P Service Orchestration Framework,”
37th HICSS, Jan. 5-8, 2004, All pages.

Office Action mailed Nov. 6, 2008 issued in related U.S. Appl. No.
11/583,646, filed Oct. 18, 2006.

Office Action mailed Apr. 10, 2009 issued in related U.S. Appl. No.
11/583,646, filed Oct. 18, 2006.

Office Action mailed Dec. 2, 2009 issued in related U.S. Appl. No.
11/583,646, filed Oct. 18, 2006.

Office Action mailed Feb. 16, 2010 issued in related U.S. Appl. No.
11/583,622, filed Oct. 18, 2006.

Office Action mailed Mar. 15, 2010 issued in related U.S. Appl. No.
11/583,695, filed Oct. 18, 2006.

Office Action mailed Jul. 5, 2007 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

Office Action mailed Jan. 3, 2008 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

Office Action mailed Jun. 13, 2008 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

Advisory Action mailed Oct. 6, 2008 issued in related U.S. Appl.
No. 11/583,527, filed Oct. 18, 2006.

Office Action mailed Mar. 17, 2009 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

Office Action mailed Dec. 29, 2009 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

Examination Report dated Feb. 19, 2010, for European Application
No. EP09156631.5.

Office Action mailed Jun. 24, 2010 issued in related U.S. Appl. No.
12/459,490, filed Jun. 30, 2009.

European Search Report and European Search Opinion completed
Mar. 1, 2010, for European Application No. EP09156702.4.
European Search Report and European Search Opinion completed
Feb. 24, 2010, for European Application No. EP09156727.1.
Office Action dated Jul. 7, 2010 issued in related U.S. Appl. No.
11/829,751, filed Jul. 27, 2007.

Office Action dated Jul. 8, 2010 issued in related U.S. Appl. No.
12/620,445, filed Nov. 17, 2009.

Office Action dated Jul. 14, 2010 issued in related U.S. Appl. No.
11/583,671, filed Oct. 18, 2006.

White, How Computers Work, Que Corp. Millennium Ed. 1999, All
pages.

Smith et al., “Virtual Machines: Versatile Platforms for Systems and
Processes,” Elsevier Science, May 2005, All pages.

Office Action dated Jul. 20, 2010 issued in related U.S. Appl. No.
11/894,624, filed Aug. 20, 2007.

Interview Summary dated Jul. 20, 2010 issued in related U.S. Appl.
No. 11/583,622, filed Oct. 18, 2006.

Office Action dated Jul. 20, 2010 issued in related U.S. Appl. No.
12/620,452, filed Nov. 17, 2009.

US 9,466,054 B1
Page 5

(56) References Cited
OTHER PUBLICATIONS

Office Action dated Jul. 20, 2010 issued in related U.S. Appl. No.
12/459,491, filed Jun. 30, 2009.

Office Action dated Jul. 22, 2010 issued in related U.S. Appl. No.
11/583,646, filed Oct. 18, 2006.

English language translation of Notice of Grounds for Rejection,
issued Jul. 29, 2010 in related Korean Application No. 2010-
7007909.

Office Action dated Aug. 3, 2010 issued in related U.S. Appl. No.
11/829,805, filed Jul. 27, 2007.

Office Action dated Apr. 14, 2010 issued in related U.S. Appl. No.
11/583,526, filed Oct. 18, 2006.

Office Action dated Aug. 19, 2010 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

English translation of Notice of Grounds for Rejection issued Aug.
24, 2010 issued in related Korean Application No. 2005-7023383.
English translation of Notice of Reasons for Rejection mailed Aug.
10, 2010 issued in related Japanese Patent Application No. 2006-
509076.

English translation of Official Action issued Aug. 3, 2010 in related
Eurasian Application No. 200901153.

Office Action mailed Sep. 1, 2010 for U.S. Appl. No. 11/583,693,
filed Oct. 18, 2006.

Yamato, “A Method of Service Composition Using Mobile Agent,
Multimedia, Distributed, Cooperative and Mobile,” (DICOMO
2003) Symposium, IPSJ, vol. 2003, No. 9, pp. 589-592, Jun. 4,
2003.

Examination Report dated Jul. 7, 2010, issued in related Canadian
Application No. 2,528,428.

English translation of Office Action issued on Aug. 20, 2010 for
related Chinese Application No. 2006-80047769.2.

English translation of Office Action issued on Jul. 15, 2010 for
related Eurasian Application No. 2007-00510/31.

Office Action mailed Sep. 21, 2010, issued in related U.S. Appl. No.
11/583,695, filed Oct. 18, 2006.

Office Action mailed Oct. 6, 2010, issued in related U.S. Appl. No.
11/829,774, filed Jul. 27, 2007.

Office Action mailed Oct. 7, 2010 issued in related U.S. Appl. No.
12/622,218, filed Nov. 19, 2009.

European Search Opinion mailed Oct. 19, 2010 for related Euro-
pean Application No. 09156727.1.

European Search Opinion mailed Oct. 19, 2010 for related Euro-
pean Application No. 09156702.4.

Office Action mailed Oct. 27, 2010 issued in related U.S. Appl. No.
11/583,622, filed Oct. 18, 2006.

Office Action dated Nov. 16, 2010 issued in related U.S. Appl. No.
11/583,526, filed Oct. 18, 2006.

Office Action dated Dec. 7, 2010 issued in related U.S. Appl. No.
11/583,671, filed Oct. 18, 2006.

Office Action dated Dec. 21, 2010 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Office Action dated Jan. 18, 2011 issued in related U.S. Appl. No.
11/829,774, filed Jul. 27, 2007.

Office Action dated Jan. 19, 2011 issued in related U.S. Appl. No.
12/620,445, filed Nov. 17, 2009.

Advisory Action mailed Feb. 11, 2011 issued in related U.S. Appl.
No. 11/583,671, filed Oct. 18, 2006.

Advisory Action mailed Feb. 17, 2011 issued in related U.S. Appl.
No. 11/583,527, filed Oct. 18, 2006.

Office Action mailed Mar. 8, 2011 issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Office Action mailed Mar. 15, 2011 issued in related U.S. Appl. No.
12/459,490, filed Jun. 30, 2009.

Office Action mailed Mar. 15, 2011 issued in related U.S. Appl. No.
12/620,452, filed Nov. 17, 2009.

Office Action mailed Mar. 24, 2011 issued in related U.S. Appl. No.
12/459,491, filed Jun. 30, 2009.

English translation of Conclusion on Invention mailed Mar. 31,
2011 in related Eurasian Patent Application No. 2009011543.

Examination Report dated Apr. 13, 2011 issued in related European
Application No. 06826285.6.

“IBM Cryptolope Live!,” General Information Guide, Version 1, pp.
1-36 (1997).

Kaplan, “IBM Cryptolopes™, Super Distribution and Digital Rights
Management,” retrieved from internet on Mar. 14, 2000:
URL:http://www.research.ibm.com/people/k/kaplan/cryptolope-
docs/crypap.html (1996).

First Examination Report dated Apr. 4, 2011 issued in related
Australian Application No. 2006304655.

English translation of Notice of Reasons for Rejection mailed Apr.
S, 2011 issued in related Japanese Patent Application No. 2007-
320348.

Office Action mailed Apr. 27, 2011 issued in related U.S. Appl. No.
12/622,218, filed Nov. 19, 2009.

Office Action mailed May 23, 2011 issued in related U.S. Appl. No.
11/583,695, filed Oct. 18, 2006.

English translation of Decision on Rejection issued Apr. 25, 2011 in
related Chinese Patent Application No. 200480021795.9.
Examination Report dated Apr. 11, 2011 issued in related Australian
Patent Application No. 2010212301.

English translation of Notice of Reasons for Rejection mailed Jun.
21, 2011 in related Japanese Patent Application No. 2008-536800.
Erickson, John S., “Toward an Open Rights Management Interop-
erability Framework”, Yankee Book Peddler, Inc. Jun. 24, 1999.
Using WSDL in a UDDI Registry.

Chinnici, Roberto et al., “Web Services Description Language
(WSDL) Version 1.2, Part 1: Core Language”, W3C Working Draft,
Jun. 11, 2003, 78 pages.

Erikson, J.S., “A Digital Object Approach to Interoperable Rights
Management: Fine-grained Policy Enforcement Enabled by a Digi-
tal Object Infrastructure,” D-Lib Magazine, Jun. 2001, 18 pages,
vol. 7, No. 6, available at http://www.dlib.org/dlib/june01/erickson/
0O6erickson html.

Gudgin, M. et al., “SOAP Version 1.2 Part 2: Adjunts, W3C
Recommendation Jun. 24, 2003,” W3C, pp. 1-58, from http://www.
w3.0rg/TR/2003/REC-soapl2-part2-20030624/ on Nov. 4, 2004.
http://en.wikipedia.org/wiki/Authorization_ Certificate, Sep. 27,
2008.

http://en.wikipedia.org/wiki/Public_key_ Certificate, Sep. 27,
2008.

Peltz, C., “Web services orchestration: a review of emerging tech-
nologies, tools, and standards.” Hewlett Pachard, Co., Jan. 2003:
pp. 1-19.

Sibert, O. et al., “Digibox: A Self-Protecting Container for Infor-
mation Commerce,” Proceedings of the First USENIX Workshop on
Electronic Commerce, Jul. 1995, 13 pages, New York, NY.
Sibert, O. et al., “Securing the Content, Not the Wire, for Informa-
tion Commerce,” 1996, 12 pages, InterTrust Technologies Corpo-
ration.

Stefik, M., “Introduction to Knowledge Systems, Chapter 7: Clas-
sification,” 1995, pp. 543-607, Morgan Kaufmann Publishers, Inc.,
San Francisco, CA.

Stefik, M., “Letting Loose the Light: Igniting Commerce in Elec-
tronic Publication,” 1994-1995, 37 pages, Xerox PARC, Palo Alto,
CA.

Stefik, M., “Letting Loose the Light: Igniting Commerce in Elec-
tronic Publication,” Internet Dreams: Archetypes, Myths, and Meta-
phors, 1996, pp. 219-253, Massachusetts Institute of Technology.
Stefik, M., “Trusted Systems,” Scientific American, Mar. 1997, pp.
78-81.

Swenson, K., “Process Management Standards Overview,” Fujitsu
Sofiware Corporation, 26 pages.

zur Muehlen, M. et al., “Developing Web Services Choreography
Standards—The Case of REST vs. SOAP,” Wesley J. Howe School
of Technology Management, Stevens Institute of Technology, pp.
1-25.

Communication enclosing supplementary European Search Report,
mailed from European Patent Office on Apr. 21, 2008.
International Search Report mailed Feb. 1, 2006, for International
Application No. PCT/US04/18120, 2 pages.

International Preliminary Report on Patentability mailed Jul. 17,
2006 for International Application No. PCT/US04/18120.

US 9,466,054 B1
Page 6

(56) References Cited
OTHER PUBLICATIONS

Examiner Interview Summary mailed Jul. 7, 2011 issued in related
U.S. Appl. No. 12/622,218, filed Nov. 19, 2009.

Office Action mailed Aug. 10, 2011, issued in related U.S. Appl. No.
10/863,551, filed Jun. 7, 2004.

Examiner Interview Summary mailed Jul. 7, 2011 issued in related
application U.S. Appl. No. 12/622,218, filed Nov. 19, 2009.
Examination Report mailed Jul. 13, 2011 issued in related European
Application No. 04776350.3.

English translation of Decision of Final Rejection mailed Jul. 12,
2011 in related Japanese Application No. 2006-509076.

Office Action mailed Aug. 10, 2011, issued in related application
U.S. Appl. No. 10/863,551, filed Jun. 7, 2004.

Office Action mailed Sep. 19, 2011, issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

English translation of Notice of Grounds for Rejection, issued Sep.
22, 2011, for Korean Application No. 2008-7011852.

Office Action mailed Oct. 7, 2011, issued in related U.S. Appl. No.
11/804,667, filed May 17, 2007.

English translation of a Decision of Final Rejection mailed Oct. 25,
2011 in related Japanese Patent Application No. 2007-320348.
Examiner’s Answer mailed Nov. 4, 2011 in related U.S. Appl. No.
11/583,693, filed Oct. 18, 2006.

Examiner’s Answer mailed Nov. 10, 2011 in related U.S. Appl. No.
11/583,671, filed Oct. 18, 2006.

Examiner’s Answer mailed Nov. 9, 2011 in related U.S. Appl. No.
11/583,646, filed Oct. 18, 2006.

Office Action mailed Nov. 18, 2011 in related U.S. Appl. No.
12/789,004, filed May 27, 2010.

English translation of Decision of Final Rejection mailed Nov. 22,
2011 in related Japanese Patent Application No. 2008-536800.
Office Action mailed Dec. 13, 2011 in related U.S. Appl. No.
12/792,965, filed Jun. 3, 2010.

Office Action mailed Dec. 21, 2011, in related U.S. Appl. No.
11/829,809, filed Jul. 27, 2007.

English translation of Notification No. 25, Official Action, mailed
Nov. 8, 2011 in related Israeli Patent Application No. 172366.
English translation of Notice of Granting, mailed Nov. 28, 2011, in
related Indonesian Patent Application No. W-00200801253.
Office Action mailed Jan. 10, 2012 in related U.S. Appl. No.
12/792,952, filed Jun. 3, 2010.

Office Action mailed Jan. 17, 2012 in related U.S. Appl. No.
11/583,695, filed Oct. 18, 2006.

Office Action mailed Jan. 19, 2012 in related U.S. Appl. No.
12/617,164, filed Nov. 12, 2009.

English translation of First Office Action mailed Dec. 7, 2011 issued
in related Chinese Patent Application No. 201110009994X.
Examination Report dated Feb. 23, 2012 issued in related European
Application No. 09156702.4.

English translation of Notice of Grounds for Rejection issued Feb.
17, 2012 in related Korean Patent Application No. 2011-7030396.
English translation of Conclusion on Patentability mailed Jan. 26,
2012, issued in related Furasian Patent Application No. 2412-
163357EA/3023.

English translation of Notice of Amendment mailed Feb. 21, 2012
issued in related Chinese Patent Application No. 201110260513.2.
Office Action mailed Mar. 14, 2012 in related U.S. Appl. No.
13/283,245, filed Oct. 27, 2011.

Examination Report dated Apr. 2, 2012 issued in related European
Application No. 09156631.5.

English translation of Substantive Examination Report Stage I,
issued in related Indonesian Patent Application No. W00 2007
01456.

Notice of Acceptance mailed Feb. 29, 2012 issued in related
Australian Patent Application No. 2010212301.
Applicant-initiated Interview Summary mailed Mar. 19, 2012
issued in related U.S. Appl. No. 11/583,527.

Applicant-initiated Interview Summary mailed Apr. 9, 2012 issued
in related U.S. Appl. No. 13/283,245.

Office Action mailed May 3, 2012 in related U.S. Appl. No.
11/804,667, filed May 17, 2007.

Notice of Allowance mailed May 11, 2012 in related U.S. Appl. No.
10/863,551.

Office Action mailed May 21, 2012 in related U.S. Appl. No.
12/617,164.

English translation of Preliminary Rejection (final notification)
issued May 31, 2012 in related Korean Application No. 2008-
7011852.

Final Office Action mailed Jun. 15, 2012 in related U.S. Appl. No.
12/792,952.

Final Office Action mailed Jun. 15, 2012 in related U.S. Appl. No.
12/789,004.

Office Action dated Jun. 25, 2012 in related Israeli Patent Applica-
tion No. 190957.

Final Office Action dated Jul. 16, 2012 in related U.S. Appl. No.
12/792,965.

European Search Report dated Jul. 11, 2012 in related European
Patent Application No. 10180088.6.

European Search Report dated Jul. 11, 2012 in related European
Patent Application No. 10181095.0.

Final Office Action dated Jul. 23, 2012 in related U.S. Appl. No.
11/829,809.

English Translation of Notice of Grounds for Rejection issued Jul.
12, 2012 in related Korean Patent Application No. 2012-7015783.
Office Action dated Aug. 23, 2012 in related U.S. Appl. No.
13/283,245.

Office Action dated Oct. 4, 2012 in related U.S. Appl. No.
13/283,313.

Examination Report dated Sep. 11, 2012 in related Australian Patent
Application No. 2012202810.

English Translation of Notice of Grounds for Rejection issued Oct.
26, 2012 in related Korean Patent Application No. 2011-7030396.
International Search Report and Written Opinion dated Oct. 23,
2012 in related PCT Application No. PCT/US2012/033150.
English translation of Second Office Action issued Oct. 9, 2012 in
related Chinese Patent Application No. 201110009994 .X.

English translation of Conclusion on Patentability mailed Sep. 28,
2012, issued in related Eurasian Patent Application No. 200901153.
Search and Examination Report dated Oct. 10, 2012, issued in
related ARTPO Patent Application No. AP/P/2008/004453.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC
dated Feb. 21, 2013 in related European Patent Application No.
06826285.6.

Wong, et al. “Dynamically Loaded Classes as Shared Libraries: an
Approach to Improving Virtual Machine Scalability” Parallel and
Distributed Processing Symposium, 2003. Proceedings Interna-
tional Apr. 22-26, 2003, pp. 38-47, cited in related Furopean Patent
Application No. 06826285.6.

Office Action dated Mar. 14, 2013 issued in related U.S. Appl. No.
13/283,126, filed Oct. 27, 2011.

Office Action dated May 7, 2013 issued in related U.S. Appl. No.
13/283,245, filed Oct. 27, 2011.

English translation of Notification No. 25, Official Action, mailed
May 9, 2013 in related Israeli Patent Application No. 223027.
Office Action dated May 28, 2013 issued in related U.S. Appl. No.
13/283,313, filed Oct. 27, 2011.

Office Action dated Jun. 11, 2013 issued in related U.S. Appl. No.
11/583,526, filed Oct. 18, 2006.

English translation of Notice of Reasons for Rejection mailed Aug.
20, 2013 in related Japanese Patent Application No. 2011-248897.
English translation of First Office Action mailed Jun. 6, 2013, issued
in related Mexican Patent Application No. 2011/000735.

Office Action dated Oct. 4, 2013 in related Canadian Patent Appli-
cation No. 2,626,244,

English translation of Third Office Action, mailed Sep. 23, 2013 in
related Chinese Patent Application No. 200480021795.9.

Office Action dated Nov. 14, 2013 issued in related U.S. Appl. No.
13/283,126, filed Oct. 27, 2011.

Notice of Allowance mailed Nov. 21, 2013 in related U.S. Appl. No.
11/583,693.

US 9,466,054 B1
Page 7

(56) References Cited
OTHER PUBLICATIONS

Chang, et al.; “Multimedia Rights Management for the Multiple
Devices of End-User”; Proceedings of the 23rd International Con-
ference on Distributed Computing Systems Workshops; IEEE;
2003; pp. 1-6.

Jonker, W. et al.; “Digital Rights Management in Consumer Elec-
tronics Products”; IEEE Signal Processing Magazine; Mar. 2004;
pp. 82-92.

Simon, J. et al.; “A Digital Licensing Model for the Exchange of
Learning Objects in a Federated Environment”; Proceedings of the
First International Workshop on Electronic Contracting; 2004; pp.
1-8.

Tari, Z. et al; “Controlling Aggregation in Distributed Object
Systems: A Graph-Based Approach”; IEEE Transactions on Parallel
and Distributed Systems; vol. 12, No. 12; Dec. 2001; pp. 1236-
1256.

Office Action dated Dec. 3, 2013 issued in related U.S. Appl. No.
13/444,624, filed Apr. 11, 2012.

Office Action dated Dec. 11, 2013 issued in related U.S. Appl. No.
11/583,526, filed Oct. 18, 2006.

Office Action dated Dec. 20, 2013 issued in related U.S. Appl. No.
12/789,004, filed May 27, 2010.

English translation of TW Search Report and Office Action issued
Jan. 21, 2014 in related Taiwan Application No. 095138235.
Indian Examination Report issued Jan. 31, 2014 in related Indian
Application No. 2720/KOLNP/2008.

Office Action dated Feb. 20, 2014 issued in related U.S. Appl. No.
11/583,622, filed Oct. 18, 2006.

Office Action dated Mar. 13, 2014 issued in related U.S. Appl. No.
12/792,965, filed Jun. 3, 2010.

Office Action dated Mar. 20, 2014 issued in related U.S. Appl. No.
12/459,490, filed Jun. 30, 2009.

Office Action dated Mar. 24, 2014 issued in related U.S. Appl. No.
11/894,624, filed Aug. 20, 2007.

Office Action dated Apr. 1, 2014 issued in related U.S. Appl. No.
11/829,805, filed Jul. 27, 2007.

English translation of JP Final Rejection issued Mar. 25, 2014 in
related Japanese Application 2011-248897.

Office Action dated May 6, 2014 issued in related U.S. Appl. No.
11/583,527 filed Oct. 18, 2006.

Australian Office Action issued May 19, 2014 in related Australian
Application No. 2012242895.

Office Action dated May 21, 2014 issued in related U.S. Appl. No.
12/620,445, filed Nov. 17, 2009.

Office Action dated May 20, 2014 issued in related U.S. Appl. No.
12/459,491, filed Jun. 30, 2009.

Office Action dated May 23, 2014 issued in related U.S. Appl. No.
12/789,004, filed May 27, 2010.

Office Action dated May 29, 2014 issued in related U.S. Appl. No.
11/829,751, filed Jul. 27, 2007.

Examination Report dated Jun. 11, 2014 issued in related European
Application No. 10180088.6.

Examination Report dated Jun. 11, 2014 issued in related European
Application No. 10181095.0.

Office Action dated Jun. 12, 2014 in related Canadian Patent
Application No. 2,626,244.

Office Action dated Jun. 25, 2014 issued in related U.S. Appl. No.
12/622,218, filed Nov. 19, 2009.

English translation of JP First Office Action issued Jun. 24, 2014 in
related Japanese Application 2014-030471.

English translation of Fourth Office Action, mailed May 21, 2014 in
related Chinese Patent Application No. 200480021795.9.

Office Action dated Jun. 27, 2014 in related Canadian Patent
Application No. 2,776,354.

Office Action dated Aug. 8, 2014 issued in related U.S. Appl. No.
11/583,622, filed Oct. 18, 2006.

Extended Furopean Search Report dated Aug. 25, 2014 in related
EP Application No. 12770687.7.

Office Action dated Sep. 11, 2014 issued in related U.S. Appl. No.
12/620,452, filed Nov. 17, 2009.

Office Action dated Sep. 17, 2014 issued in related U.S. Appl. No.
11/829,774, filed Jul. 27, 2007.

Office Action dated Sep. 17, 2014 issued in related U.S. Appl. No.
12/459,490, filed Jun. 30, 2009.

Office Action dated Sep. 26, 2014 issued in related U.S. Appl. No.
11/804,667, filed May 17, 2007.

Office Action dated Sep. 26, 2014 issued in related U.S. Appl. No.
12/792,952, filed Jun. 3, 2010.

Office Action dated Sep. 26, 2014 issued in related U.S. Appl. No.
12/617,164, filed Nov. 12, 2009.

Office Action dated Sep. 26, 2014 issued in related U.S. Appl. No.
11/829,809, filed Jul. 27, 2007.

English translation of First Office Action, mailed Aug. 5, 2014 in
related Chinese Patent Application No. 201210218731 4.

Indian Examination Report issued Sep. 10, 2014 in related Indian
Application No. 1969/KOLNP/2008.

Office Action dated Nov. 7, 2014 issued in related U.S. Appl. No.
11/894,624, filed Aug. 20, 2007.

Office Action dated Nov. 12, 2014 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

English translation of JP Final Rejection issued Nov. 11, 2014 in
related Japanese Application 2014-030471.

English translation of Fifth Office Action, issued Nov. 24, 2014 in
related Chinese Patent Application 200480021795.9.

Office Action dated Jan. 9, 2015 issued in related U.S. Appl. No.
13/444,624, filed Apr. 11, 2012.

Office Action dated Jan. 26, 2015 issued in related U.S. Appl. No.
12/622,218, filed Nov. 19, 2009.

Office Action dated Feb. 10, 2015 issued in related U.S. Appl. No.
13/283,126, filed Oct. 27, 2011.

English translation and First Office Action, issued Dec. 31, 2014 in
related Chinese Patent Application 201110260513.2.

Office Action dated Mar. 10, 2015 issued in related U.S. Appl. No.
11/583,622, filed Oct. 18, 2006.

Office Action dated Mar. 31, 2015 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006.

Office Action dated Jun. 2, 2015 issued in related U.S. Appl. No.
13/283,245, filed Oct. 27, 2011.

Office Action dated Jun. 11, 2015 issued in related U.S. Appl. No.
13/444,624, filed Apr. 11, 2012.

Canadian Office Action dated Jul. 7, 2015 in related CA Application
No. 2,626,244.

English translation and First Office Action, issued Aug. 5, 2015 in
related Chinese Patent Application 201280028593.1.

Office Action dated Sep. 24, 2015 issued in related U.S. Appl. No.
11/583,526, filed Oct. 18, 2006.

Office Action dated Oct. 1, 2015 issued in related U.S. Appl. No.
12/789,004, filed May 27, 2010.

Office Action dated Mar. 18, 2016, issued in related U.S. Appl. No.
13/444,624, filed Apr. 11, 2012.

English translation and Second Office Action, issued Feb. 26, 2016,
in related Chinese Patent Application 201280028593.1.

English translation and First JP Office Action issued Apr. 26, 2016,
in related Japanese Application 2014-505260.

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 34 US 9,466,054 B1

CONSUMER
MUSIC LOCKER

140
S,
150 170 PC SOFTWARE
= ~n VIDEQ PLAYER
PORTABLE MUSIC SOFTWARE
PLAYER UPGRADE
SERVICE 120
o
WEB MUSIC
RETAILER

160
¥y

=
DIGITAL RIGHTS ENTERTAINMENT
LICENSE SERVICE HOME GATEWAY

FiG. 1

U.S. Patent Oct. 11, 2016 Sheet 2 of 34 US 9,466,054 B1

Internet

NEMO Host NEMO Host 3" Parly web Service

NEMO Host

210

Tethered Node Tethered Node

FIG. 2A

US 9,466,054 B1

Sheet 3 of 34

Oct. 11, 2016

U.S. Patent

3PON pasayiaL

e

SpoON paseyiaL

g2 'Old

M

OM]SN ealy [euosiad n_NnU

\ 1174

20IMISS gom fed €

1soH OW3N

JENE]

JSOH OWN3N

U.S. Patent Oct. 11, 2016 Sheet 4 of 34 US 9,466,054 B1

220

Infernet

NEMO Host NEMO Host 3" Party web Sdrvice

NEMO Host 11O Host

A — 4

! 4
i A R

v
internef-capable NEMO hos@

NEMO Host NEMO Host

=

)

280 Tethered Node Tethered Node

FIG. 2C

U.S. Patent Oct. 11, 2016 Sheet 5 of 34 US 9,466,054 B1

internet 7

NEMO Host NEMO Host 3% Party web Service /

NEMO Host

NEMO Host

210

GEMO Host with Gateway Servica

Tethered Node Tethered Node
285

FIG. 2D

U.S. Patent Oct. 11, 2016 Sheet 6 of 34

US 9,466,054 B1

NEMO Host NEMO Host

NEMO Host

"

Gppears as a NEMO peer (via prox@A

285

Tethered Node

FIG. 2E

U.S. Patent Oct. 11, 2016

Sheet 7 of 34

US 9,466,054 B1

NEMO Host NEMO Host

NEMO Device Adapter

NEMO Host

206

1

G’rivate, dedicated communicatiorg

Tethered Node

FIG. 2F

U.S. Patent Oct. 11, 2016 Sheet 8 of 34

US 9,466,054 B1

CONTENT PROVIDER - SERVER

HOST APPLICATION | WEB SERVICES

DRM ENGINE SERVICES

CONSUMER PC

320

HOST APPLICATION | WEB SERVICES

DRM ENGINE SERVICES

BULK PACKAGER

CONSUMER PC

310

330

PACKAGER/PLAYER.
HOST APPLICATION

WEB SERVICES

DRM ENGINE

SERVICES

PORTABLE DEVICE

HOST APPLICATION

DRM ENGINE j SERVICES

FIG. 3

PLAYER

340

U.S. Patent Oct. 11, 2016 Sheet 9 of 34 US 9,466,054 B1

DEVICE ;
MANUFACTURERJ

PORTABLE
DEVICE

FIG. 4

U.S. Patent Oct. 11, 2016 Sheet 10 of 34 US 9,466,054 B1

SERVICE ACCESS POINT
/\; = %\é
fe
UE (V5]
W
2 28
| 25
B | (S
[22 2 § [} &2
2 | - =
& &
B T
(o 0 ¥ . s . 540 o s
. | WORKFLOW } 550
S ! | COLLATOR
B
[75]

FIG. 5A

U.S. Patent Oct. 11, 2016 Sheet 11 of 34 US 9,466,054 B1

SERVICE ACCESS POINT

>

QUESTS/

RESPONSES

560
B

SERVICE

A R N T R T L HRBRAMARRRN

SERVICE SERVICE
INTERFACE INTERFACE
BINDING 1 BINDING 2

ARETIEE SRR RN

INTERFACE
BINDING 3

SERVICE ADAPTATION LAYER

R

NATIVE SERVICES API

FIG. 5B

U.S. Patent Oct. 11, 2016 Sheet 12 of 34 US 9,466,054 B1

NEMO Peer {participating as a Service User)

Service access Point (SAP)

Exposed Interfaces
(XML Messags-based Native Functions)

SAP interface to

- NEMO Trust
SOAE Mapping Management
ayer ;
Processing { L
i Web Services Layer §
; SOAP Service Proxies or |) f
1 | Dynamic Invocaction Support | | §
1= i
. i |
i "~
: !
Stack || Inspection rocessing Hooks !
§ 8
®
1]
o]
>
£
NEMO Peer (participating as a Service Provider} ,g
Service Adaptation Layer (SAL) 3
: Web Services Layer :
{ i
: SOAP WSDL ~ :
: Stack Generation | | SOAP Message ;
i Processing Hooks i
: SOAP Service Skeleton ;
{ i
{ |
b e e e e e v e - e - - -
<;\/7

NEMO Trust
Management
Processing

* Native Service

. Implementation NEMO Workiow

Collator (Service
Orchestration)

FIG. 6A

U.S. Patent

Oct. 11, 2016

™,

Service Business
Logic
{may inciude
Authorization logic)

Sheet 13 of 34

US 9,466,054 B1

Exposure via Native
Client AP or Direct
Embedding in Client

g
1§ o Service Adaptation
BT Layer (SAL)
o 2 Al
e85
25 E
2R
LA Lo
~— 8 o
-
Wrkflow
Coliator
M N
e S [
o AN
& %
e a b lf“ﬁgﬂ
Trust g Authorizatio
Engine a n Engine
{Interceptor) 'f (Interceptor)
£ N
o}
&
~
Web Services Layer :;{ XML Security
S55P i Laysr
S‘OAP Message : ; XML !
Stack Processing | Signature !
Hooks !: Support | |
___________________ :] !
ransoort WSDL [Ny XML
r;f:f; Processing | i Encryption
) Support il Sugpport
i

S 584
R S N
T s{/
=8 = Service Access
j@ %5 Point (SAF)
i E A
352
FOS
g
~T 8 v
~E g e [”‘692
Trust
Engine
{(interceptor)
o~ \\\ T
Pty «) Sy
<
o
&
<
g oo
D @
g
-
25
|
[
g
i 2 T
! t Web Services Layer Elr XML Security i
N SOAP o leyer
i (| SOAP Message ;: ML i
oy Stack Processing | |11 | Signature ;
; : Hooks :: Support :
i : - 1 g
; ! !
! H Transport B WPSDL n XML_ i
; : Stack rocessing 1y Encryption ;
I Support :I Support i
i L TS s e o | N :
b3
66—

Communica

Ethern

(USP, WiFi, Bluetooth,

tion Link

et}

FIG. 6B

U.S. Patent Oct. 11, 2016

Sheet 14 of 34

US 9,466,054 B1

736
= k.E TARGET SERVICE BINDINGS

REQUEST MESSAGES >[

| ACCESS POINT §

i

SERVICE

< RESPONSE MESSAGES

FIG. 7A

770
f-nu’

788,;*“ NATIVE PFROTOCOL

FIG. 7B

SERVICE
ACCESS POINT
NATIVE
PROTOCOL -
XML
TRANSLATION

o 760

U.S. Patent

1
PR

721
[

Oct. 11, 2016 Sheet 15 of 34 US 9,466,054 B1

|

{ SERVICE SERVICE 712

{ ACCESS | PROVIDING
POINT . NODE |

FIG. 7C

SERVICE
ACCESS
POINT

PRI

FIG. 7D

FIG. TE

SERVICE

SERVICE
PROVIDING
NODE

PROVIDING
NODE

SERVICE
PROVIDING

SERVI

NOBE

NODE

SERVICE
PROVIDING
NODE

PROVIDING |

PROVIDING |3

>~ 725

>738

U.S. Patent Oct. 11, 2016 Sheet 16 of 34 US 9,466,054 B1

rm-——'——---.- 300’ %0 'Ot 300 OUR’ A0 Vo 00 -00¥ 100 O0F IO

Message Processing Layer

SRR

‘i DOM/SAX XML Libraries

FIG. 8

U.S. Patent Oct. 11, 2016 Sheet 17 of 34 US 9,466,054 B1

840

P ,....,?m
620 NEMO
NEMO-ENABLED NEMO -
APPLICATION x § SERVICE
942 912 PROVIDER
~=T"~ SERVICE Fadiin. &
PROVIDER X"
922 I
NEMO
NEMO
SERVICE . 944
ACCESS POINT ‘ggﬂgf SERVICE
‘ - PROVIDER
/4) “Z”
912 _J
950
A
940 e N\ 910
rnn—-ﬂ /—.—’
NEMO-ENABLED NEMO
> APPLICATION \
< PHASE 1 > 012
942 . |2
‘ SERVICE ¥
< SHASES > PROVIDER “X
NEMO 3
i
SERVICE ,
44 PHASE 3 %
944_t~| ACCESS POINT < WORKFLOW 01
' COLLATOR

FIG. 9B

U.S. Patent Oct. 11, 2016 Sheet 18 of 34 US 9,466,054 B1

260

NEMO NODE

WORKFLOW
COLLATOR

MESSAGE
i PUMP

I

US 9,466,054 B1

Sheet 19 of 34

Oct. 11, 2016

U.S. Patent

NIDId
HOSS5400dd

¥OSSAOOUd |

YOLVTIOON
AOLOVINIOM

596

Taddg 16
% 2y 175]
a5 &) \4 a0
QO % \ = . m m i
aF N\ / 4
o .] m
O 25}

dANNd

JDVSSHN

0L6 "

7l MOSSED0Ud

Jay
TVRNYE4LXH

YOSSAI0Ud |
144
TVNIEALXE |

{6 "oid

U.S. Patent Oct. 11, 2016 Sheet 20 of 34 US 9,466,054 B1

{ USER INTERFACE 1004
w w
N p
1002 HOST APPLICATION >
MEDIA 1010
: o RENDERING |~
1008 ! 1016
\ “d
HOST }| CONTENT
1000 SERVICES || SERVICES
cevmong | e J| SERVICES B A
| crypTOGRAPHY |
1014 NETWORK SERVICES |
"~ SERVICE | \
ACCESS POINT | et

FIG. 10

U.S. Patent Oct. 11, 2016 Sheet 21 of 34 US 9,466,054 B1

1130
\/{ HOST APPLICATION]
1100
1110 DRM ENGINE
e

/ CONTROL VM
1102 1106 o~

HOST
SYSTEM | ENVIRONMENT

CODE
MODULES

1104
——

4

MEMORY J

NE ___ Y,

FIG. 11

U.S. Patent Oct. 11, 2016 Sheet 22 of 34 US 9,466,054 B1

CRYPTO
L SERVICES s

FIG. 12A

1210
USER INTERFACE

1200
1270 t — 1235
NEMO GENERAL
- HOST APPLICATION CRYPTO
SERVICES CRYPTO.
wﬂ 1240, 1255 I 57
1225 DRM MEDIA TEN
PACKAGING SE}é?/ISc:T'ES FORMAT Cc?g(PTOT
ENGINE SERVICES SERVICES

FIG. 12B

US 9,466,054 B1

Sheet 23 of 34

Oct. 11, 2016

U.S. Patent

€1 "Old

INDOIS =

s

HSVH T04LNOCD

2a00
AIAH TOYINOD

1€l 0t1 zogl

ATA INTINOOD LNHINOD
o1el 00¢

Y An NOD
L N INHL
ADIALLAAYD 3 {HLJAYONA
b€l (4 b
1

U.S. Patent Oct. 11, 2016 Sheet 24 of 34 US 9,466,054 B1

1400A 1400B

1401A

ATTRIBUTES (NODE TYPE, ETC.)
1402A
1403A
1404A R o

CONTENT PROTECTION PUBLIC KEY

2o A o7t

1405A '
1406A,

1426

. KEY DERIVATION INFO

= SIGNED
= CONFIDENTIAL

= CERTIFIED

FIG. 14

U.S. Patent Oct. 11, 2016 Sheet 25 of 34 US 9,466,054 B1

1500C
NODEC

A

1505A

O
i
_

NN

1515A
et

3

N

X
N
S

s

8

1525A
e

I\

7
//,:mw/m;;%

ENCRYPTED
WITHK, [A]
ORK,, [A]

3 1555B \

1585A 3 KEY CHAIN P
— (I =
1570]

1560 & 1580

OBTAINED BY
PROCESSING
LINKBL

cl

OBTAINED BY
PERSONALITY
LINK A-B

OBTAINED FROM
PERSONALITY
NODE A

priv [

) = KEPT SECRET BY ENTITY

=DECRYPT WITH PRIVATE OR
SYMMETRIC KEY

FIG. 15

US 9,466,054 B1

Sheet 26 of 34

Oct. 11, 2016

U.S. Patent

9} "Oid

puojAed aBessap jo Suissanaig '3

aessoy asuodsay wmay g SORUBLIGS 1STU] PaB1I0TaN 01 SUPY dsuodsay AEpPIEA L

Fuissaoalg $a3esSoJA a5U0dSoY 2O JO uQ Suia1e09Y ‘9

o3essapy ayendoddy Aue op asuodsay uoieziIoyNy Sutawosy uodn)p 1sanbay jo Sunedsiq ‘s

" coupo a8ussoly 15anbay Jo uoneas) ‘y

S1Y3 0} SS90V azLONY JeY (s)apou o) ysanbay uopwzuoyny ipedsiq ¢ dapiacid 2914158 yum diysuore|ay pastu], 91qeidacay Jo uonenodoN ‘¢
3poN Buysanbay wim diysuoteiay parstu, ajqesdecoy jo uogenoon uonaajag Juipulg 0IAISS T
pauoddng s1 ao1An § pajsanbay j1omuuseQ | K19A0081(] S01AI10G |

SRPIAGLJ DIAIIG UTGHM SIUIAT Jo Moj] :apoN Supsenboy uI spusAT Jo Mol

HAON

HUON ,
P [ONLLSANOAY

DNIdIAOYd
HOIAYLS

a
g 51 9%

G /S NIVIAE HLINI

TIOW M0 0¥z

HAON
DNIZIYOHLNV

A
7
i
A
%
A
7
%
Z

0£91

§091

0091

U.S. Patent Oct. 11, 2016 Sheet 27 of 34

1715

i ~
) NOTIFICATION NOTIFICATION HANDLER
172\93‘%% AWARE, SERVICE DISCOVERY
| INTERESTED
NODE
5
FIG. 17A

NOTIFICATION
ORIGINATING,
PROCESSING
NODE

NOTIFICATION

AWARE, _
INTERESTED NOTIFICATION |
NODE | PROCESSING

NODE

| NOTIFICATION
| PROCESSING

NOTIFICATION
PROCESSING
NODE

NOTIFICATION
PROCESSING

NODE

{ NOTIFICATION
| ORIGINATING
| NODE

US 9,466,054 B1

>~l710

FIG. 17B

U.S. Patent

1810A | REQUESTING
NODE

1810c | NOTIFICATION |
ORIGINATING
NODE

Oct. 11, 2016

Sheet 28 of 34

SERVICE SEARCH
CRITERIA

18204
[SERVICE DISCOVERY REQUEST> SERVICE
1815A
<SERVICE INTERFACE BINDINGS |

SERVICE INTERFACE
BINDINGS

FIG. 18A

NODE DESCRIPTION

| PEER REGISTRATION REQUEST >

1815B

<1L PEER REGISTRATION RESPONSE |
[

RESPONSE
ACKNOWLEDGMENT _g#

FIG. 18B

1815C
,.._J

NODE STATUS CHANGE NOTIFICATION,
SERVICE AVAILABILITY CHANGE
NOTIFICATION

FIG. 18C

US 9,466,054 B1

U.S. Patent Oct. 11, 2016 Sheet 29 of 34 US 9,466,054 B1

1915A
f_J

EXCHANGE USING SERVICE BINDING
WITH IMPLICITY TRUSTED CHANNEL -

SERVICE
REQUESTING
NODE

1910A

FIG. 19A

REQUEST WITH TRUST @EDENM
ATTRIBUTES

1910B_| REQUESTING
NODE

1915B
RESPONSE WITH TRUST CREDENTIAL

ATTRIBUTES

FIG. 19B

CREDENTIAL SEARCH
CRITERIA

LRI P e

Cmo by

REQUESTING
NODE

e

1920C

[SECURITY CREDENTIAL REQUEST

SERVICE
PROVIDING
NODE

1910C

1915C
SECURITY CREDENTIAL RESPONSE]1

CREDENTIAL DATA

FIG. 19C

US 9,466,054 B1

Sheet 30 of 34

Oct. 11, 2016

U.S. Patent

omomA

HAON
ONIZJOHLNV

HAON
ONIZMOH.LNY

asNOdsTd
1s3n0OTd

v
NOILVZIOHLA
NOLLYZIOBLOY

0¢ 'Old

HSNOdSTY AHINGa
NOILVZIYOHLNY

HAON
va ONILSINOAY

AH 1s4nOT AOIANES |

HAON
ONIAIAOYd
AOIAYES

| ISNOdSTY ADIA¥A

g

AN R G,

0207 \ Y /

s10C

US 9,466,054 B1

Sheet 31 of 34

Oct. 11, 2016

U.S. Patent

i¢ "Old

XINO dIHS HAEWNAN < m——

SSADOV Add s
+ dIHSYTGWNHN

<)

HOIAHd
FT9VI¥0d

A¥VNEI'T Or1aNd
or1and TIv 153 15

SHVAEIT

\

U.S. Patent Oct. 11, 2016 Sheet 32 of 34 US 9,466,054 B1
2210 B
~ pkCM
2220 |
1 | pkDS
Data Ssgment Image
223{3__‘“_,~
pkCS
Code Segment Image > 2280
2240 §
= pkEX
Number of Entrxies [N (32 bits}]
Each entrv:
fnameSize 98 bit) H
o

FIG. 22

US 9,466,054 B1

Sheet 33 of 34

Oct. 11, 2016

U.S. Patent

€C 'Old
TTA0Ud AE0D :
S — 06¢eg
A A SR

A0 ¥d WHd

HT404d

H1H0dd

SNOISNALXH P&m - SNOISNHALXH
‘ HOIAYHS HIO0D

HTH0dd d HTJO¥d FI0D

T

09¢€T

SNOISNILXH FTIH0Ed SHOIAYES H900

US 9,466,054 B1

Sheet 34 of 34

Oct. 11, 2016

U.S. Patent

HOIAYES

HNIDNH Wdd

aasva-LINYEILNI

NOLLVZI'TVYNOS¥dd AEV
(11944

AYLSIOHY IAAn
QISVH-LINIHLNI
orve

¥Z 'Old

0oyt

(dvos ‘1aarn)
ST000104d ADIAYAS €M S1A0ddNS +
JANNFLINI OL SSADOV SLY0ddNS +

LNJIOd SSHDDV HOIAYES - ONIN

g0IA3d
0zve AVMILYD FNOH

|

TIOMIIAN
VIV

0T\ TvnOSHad

|

(LNIOd SS300V
FOIAYAS LNOHLIM) A3 T19VNI-OWNAN +

ITdVNH dudN+
HNIONH WA SLI0ddNS +

JHAVId OIS TYNOSHdd

113 74

US 9,466,054 B1

1
INTEROPERABLE SYSTEMS AND
METHODS FOR PEER-TO-PEER SERVICE
ORCHESTRATION

RELATED APPLICATIONS

This is a continuation of application Ser. No. 11/804,667,
filed May 17, 2007, which is a continuation of application
Ser. No. 10/863,551, filed Jun. 7, 2004, which claims the
benefit of Provisional Applications Nos. 60/476,357, filed
Jun. 5, 2003, entitled Systems and Methods for Peer-To-Peer
Service Orchestration, attached hereto as Appendix 1(A),
and 60/504,524, filed Sep. 15, 2003, entitled Digital Rights
Management Engine Systems and Methods, attached hereto
as Appendix 1(B), all of which are incorporated herein by
reference.

COPYRIGHT AUTHORIZATION

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

Networks such as the Internet have become the predomi-
nant medium for the delivery of digital content and media
related services. The emergence of standard web services
protocols promises to accelerate this trend, enabling com-
panies to provide services that can interoperate across mul-
tiple software platforms and support cooperation between
business services and consumers via standardized mecha-
nisms.

Yet, significant barriers exist to the goal of an interoper-
able and secure world of media-related services. For
example, multiple, overlapping de facto and formal stan-
dards can actually inhibit straightforward interoperability by
forcing different implementations to choose between mar-
ginally standard, but otherwise incompatible, alternative
technical approaches to addressing the same basic interop-
erability or interconnection problems. In some cases these
incompatibilities are due to problems that arise from trying
to integrate different generations of technologies, while in
other cases the problems are due to market choices made by
different parties operating at the same time but in different
locales and with different requirements. Thus, despite stan-
dardization, it is often difficult to locate, connect to, and
interact with devices that provide needed services. And there
are frequently incompatibility issues between different trust
and protection models.

While emerging web service standards such as WSDL
(Web Services Description Language) are beginning to
address some of these issues for Internet-facing systems,
such approaches are incomplete. They fail to address these
issues across multiple network tiers spanning personal and
local area networks; home, enterprise, and department gate-
ways; and wide area networks. Nor do they adequately
address the need for interoperability based on dynamic
orchestration of both simple and complex services using a
variety of service interface bindings (e.g., CORBA, WS-],
Java RMI, DCOM, C function invocation, .Net, etc.), thus
limiting the ability to integrate many legacy applications.
The advent of widely deployed and adopted peer-to-peer

10

15

20

25

30

35

40

45

50

55

60

65

2

(P2P) applications and networks further compounds the
challenges of creating interoperable media-related services,
due in part to the fact that there is no unified notion of how
to represent and enforce usage rights on digital content.

SUMMARY

Embodiments of the systems and methods described
herein can be used to address some or all of the foregoing
problems. In one embodiment, a services framework is
provided that enables multiple types of stakeholders in the
consumer or enterprise media space (e.g., consumers, con-
tent providers, device manufacturers, service providers) to
find each other, establish a trusted relationship, and
exchange value in rich and dynamic ways through exposed
service interfaces. Embodiments of this framework—which
will be referred to generally as the Network Environment for
Media Orchestration (NEMO)—can provide a platform for
enabling interoperable, secure, media-related e-commerce in
a world of heterogeneous consumer devices, media formats,
communication protocols, and security mechanisms. Dis-
tributed policy management of the service interfaces can be
used to help provide trust and security, thereby facilitating
commercial exchange of value.

While emerging web service standards are beginning to
address interoperability issues for Internet-facing services,
embodiments of NEMO can be used to address interoper-
ability across multiple network tiers spanning personal and
local area networks; home, enterprise, and department gate-
ways; and wide area networks. For example, NEMO can
provide interoperability in one interconnected system using
cell phones, game platforms, PDAs, PCs, web-based content
services, discovery services, notification services, and
update services. Embodiments of NEMO can further be used
to provide dynamic, peer-to-peer orchestration of both
simple and complex services using a variety of local and
remote interface bindings (e.g. WS-1[1], Java RMI, DCOM,
C, Net, etc.), thereby enabling the integration of legacy
applications.

In the media world, the systems and interlaces required or
favored by the major sets of stakeholders (e.g., content
publishers, distributors, retail services, consumer device
providers, and consumers) often differ widely. Thus, it is
desirable to unite the capabilities provided by these entities
into integrated services that can rapidly evolve into optimal
configurations meeting the needs of the participating enti-
ties.

For example, diverse service discovery protocols and
registries, such as Bluetooth, UPnP, Rendezvous, JINI,
UDDI, and LDAP (among others) can coexist within the
same service, enabling each node to use the discovery
service(s) most appropriate for the device that hosts that
node. Another service might support IP-based as well as
wireless SMS notification, or various media formats (MP4,
WME, etc.).

Embodiments of NEMO satisfy these goals using peer-
to-peer (P2P) service orchestration. While the advantages of
P2P frameworks have been seen for such things as music
and video distribution, P2P technology can be used much
more extensively.

Most activity in web services has focused on machine-
to-machine interaction with relatively static network con-
figuration and client service interactions. NEMO is also
capable of handling situations in which a person carries parts
of their personal area network (PAN), moves into the prox-
imity of a LAN or another PAN, and wants to reconfigure

US 9,466,054 B1

3

service access immediately, as well as connect to many
additional services on a peer basis.

Opportunities also exist in media and various other enter-
prise services, and especially in the interactions between two
or more enterprises. While enterprises are most often orga-
nized hierarchically, and their information systems often
reflect that organization, people from different enterprises
will often interact more effectively through peer interfaces.
For example, a receiving person/service in company A can
solve problems or get useful information more directly by
talking to the shipping person in company B. Traversing
hierarchies or unnecessary interfaces generally is not useful.
Shipping companies (such as FedEx and UPS) realize this
and allow direct visibility into their processes, allowing
events to be directly monitored by customers. Companies
and municipalities are organizing their services through
enterprise portals, allowing crude forms of self-service.

However, existing peer-to-peer frameworks do not allow
one enterprise to expose its various service interfaces to its
customers and suppliers in such a way as to allow those
entities to interact at natural peering levels, enabling those
entities to orchestrate the enterprise’s services in ways that
best suit them. This would entail, for example, some form of
trust management of those peer interfaces. Preferred
embodiments of the present invention can be used to not
only permit, but facilitate, this P2P exposure of service
interfaces.

In the context of particular applications such as DRM
(Digital Rights Management), embodiments of NEMO can
be used to provide a service-oriented architecture designed
to address the deficiencies and limitations of closed, homo-
geneous DRM systems. Preferred embodiments can be used
to provide interoperable, secure, media-related commerce
and operations for disparate consumer devices, media for-
mats, and security mechanisms.

In contrast to many conventional DRM systems, which
require relatively sophisticated and heavyweight client-side
engines to handle protected content, preferred embodiments
of the present invention enable client-side DRM engines to
be relatively simple, enforcing the governance policies set
by richer policy management systems operating at the
service level. Preferred embodiments of the present inven-
tion can also provide increased flexibility in the choice of
media formats and cryptographic protocols, and can facili-
tate interoperability between DRM systems.

A simple, open, and flexible client-side DRM engine can
be used to build powerful DRM-enabled applications. In one
embodiment, the DRM engine is designed to integrate easily
into a web services environment, and into virtually any host
environment or software architecture.

Service orchestration is used to overcome interoperability
barriers. For example, when there is a query for content, the
various services (e.g., discovery, search, matching, update,
rights exchange, and notification) can be coordinated in
order to fulfill the request. Preferred embodiments of the
orchestration capability allow a user to view all home and
Internet-based content caches from any device at any point
in a dynamic, multi-tiered network. This capability can be
extended to promote sharing of streams and playlists, mak-
ing impromptu broadcasts and narrowcasts easy to discover
and connect to, using many different devices, while ensuring
that rights are respected. Preferred embodiments of NEMO
provide an end-to-end interoperable media distribution sys-
tem that does not rely on a single set of standards for media
format, rights management, and fulfillment protocols.

In the value chain that includes content originators, dis-
tributors, retailers, service providers, device manufacturers,

10

15

20

25

30

35

40

45

50

55

60

65

4

and consumers, there are often a number of localized needs
in each segment. This is especially true in the case of rights
management, where content originators may express rights
of use that apply differently in various contexts to different
downstream value chain elements. A consumer gateway
typically has a much more narrow set of concerns, and an
end user device may have a yet simpler set of concerns,
namely just playing the content. With a sufficiently auto-
mated system of dynamically self-configuring distribution
services, content originators can produce and package con-
tent, express rights, and confidently rely on value added by
other service providers to rapidly provide the content to
interested consumers, regardless of where they are or what
kind of device they are using.

Preferred embodiments of NEMO {fulfill this goal by
providing means for multiple service providers to innovate
and introduce new services that benefit both consumers and
service providers without having to wait for or depend on a
monolithic set of end-to-end standards. Policy management
can limit the extent to which pirates can leverage those
legitimate services. NEMO allows the network effect to
encourage the evolution of a very rich set of legitimate
services providing better value than pirates can provide.

Some “best practice” techniques common to many of the
NEMO embodiments discussed below include the follow-
ing:

Separation of complex device-oriented and service-ori-

ented policies

Composition of sophisticated services from simpler ser-

vices

Dynamic configuration and advertisement of services

Dynamic discovery and invocation of various services in

a heterogeneous environment

Utilization of gateway services from simple devices

A novel DRM engine and architecture is also presented
that can be used with the NEMO framework. This DRM
system can be used to achieve some or all of the following
goals:

Simplicity. In one embodiment, a DRM engine is pro-
vided that uses a minimalist stack-based Virtual Machine
(VM) to execute control programs (e.g., programs that
enforce governance policies). For example, the VM might
consist of only a few pages of code.

Modularity. In one embodiment, the DRM engine is
designed to function as a single module integrated into a
larger DRM-enabled application. Many of the functions that
were once performed by monolithic DRM kernels (such as
cryptography services) can be requested from the host
environment, which may provide these services to other
code modules. This allows designers to incorporate standard
or proprietary technologies with relative ease.

Flexibility. Because of its modular design, preferred
embodiments of the DRM engine can be used in a wide
variety of software environments, from embedded devices to
general-purpose PCs.

Open. Embodiments of the DRM engine are suitable for
use as reference software, so that code modules and APIs
can be implemented by users in virtually any programming
language and in systems that they control completely. In one
embodiment, the system does not force users to adopt
particular content formats or restrict content encoding.

Semantically Agnostic. In one embodiment, the DRM
engine is based on a simple graph-based model that turns
authorization requests into queries about the structure of the
graph. The vertices in the graph represent entities in the
system, and directed edges represent relationships between

US 9,466,054 B1

5

these entities. However, the DRM engine does not need to
be aware of what these vertices and edges represent in any
particular application.

Seamless Integration with Web Services. The DRM client
engine can use web services in several ways. For example,
vertices and edges in the graph can be dynamically discov-
ered through services. Content and content licenses may also
be discovered and delivered to the DRM engine through
sophisticated web services. Although one embodiment of the
DRM engine can be configured to leverage web services in
many places, its architecture is independent of web services,
and can be used as a stand-alone client-side DRM kernel.

Simplified Key Management. In one embodiment, the
graph topology can be reused to simplify the derivation of
content protection keys without requiring cryptographic
retargeting. The key derivation method is an optional but
powerful feature of the DRM engine—the system can also,
or alternatively, be capable of integrating with other key
management systems.

Separation of Governance, Encryption, and Content. In
one embodiment, the controls that govern content are logi-
cally distinct from the cryptographic information used to
enforce the governance. Similarly, the controls and crypto-
graphic information are logically distinct from content and
content formats. Each of these elements can be delivered
separately or in a unified package, thus allowing a high
degree of flexibility in designing a content delivery system.

Embodiments of the NEMO framework, its applications,
and its component parts are described herein. It should be
understood that the framework itself is novel, as are many of
its components and applications. It should also be appreci-
ated that the present inventions can be implemented in
numerous ways, including as processes, apparatuses, sys-
tems, devices, methods, computer readable media, or a
combination thereof. These and other features and advan-
tages will be presented in more detail in the following
detailed description and the accompanying drawings which
illustrate by way of example the principles of the inventive
body of work.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the inventive body of work will be
readily understood by referring to the following detailed
description in conjunction with the accompanying drawings,
wherein like reference numerals designate like structural
elements, and in which:

FIG. 1 illustrates a sample embodiment of the system
framework.

FIG. 2a illustrates a conceptual network of system nodes.

FIG. 25 illustrates system nodes in a P2P network.

FIG. 2c illustrates system nodes operating across the
Internet.

FIG. 2d illustrates a system gateway node.

FIG. 2e illustrates a system proxy node.

FIG. 2fillustrates a system device adapter node.

FIG. 3 illustrates a conceptual network of DRM devices.

FIG. 4 illustrates a conceptual DRM node authorization
graph.

FIG. 5a illustrates a conceptual view of the architecture of
a system node.

FIG. 5b illustrates multiple service interface bindings
supported by the service adaptation layer of a system node.

FIG. 6a illustrates basic interaction between a service-
providing system node and a service-consuming system
node.

20

25

35

40

45

50

55

60

6

FIG. 6b is another example of an interaction between a
service-providing system node and a service-consuming
system node.

FIG. 7a illustrates a service access point involved in a
client-side WSDL interaction.

FIG. 76 illustrates a service access point involved in a
client-side native interaction.

FIG. 7c illustrates a service access point involved in a
service-side point-to-point interaction pattern.

FIG. 7d illustrates a service access point involved in a
service-side point-to-multiple point interaction pattern.

FIG. 7e illustrates a service access point involved in a
service-side point-to-intermediary interaction pattern.

FIG. 8 illustrates an embodiment of the architecture of the
service adaptation layer.

FIG. 9a illustrates an interaction pattern of a workflow
collator relying upon external service providers.

FIG. 95 illustrates an interaction pattern of a workflow
collator involved in direct multi-phase communications with
a client node.

FIG. 9¢ illustrates a basic intra-node interaction pattern of
a workflow collator.

FIG. 9d illustrates a relatively complex interaction pattern
of a workflow collator.

FIG. 10 illustrates the system integration of a DRM
engine.

FIG. 11 illustrates an embodiment of the architecture of a
DRM engine.

FIG. 12aq illustrates a DRM engine and related elements
within a client-side system node.

FIG. 125 illustrates a DRM engine and related elements
within a service-side system node.

FIG. 13 illustrates an embodiment of content protection
and governance DRM objects.

FIG. 14 illustrates an embodiment of node and link DRM
objects.

FIG. 15 illustrates an embodiment of DRM cryptographic
key elements.

FIG. 16 illustrates a basic interaction pattern between
client and service-providing system nodes.

FIG. 17a illustrates a set of notification processing nodes
discovering a node that supports a notification handler
service.

FIG. 175 illustrates the process of notification delivery.

FIG. 18a illustrates a client-driven service discovery
scenario in which a requesting node makes a service dis-
covery request to a targeted service providing node.

FIG. 18b illustrates a peer registration service discovery
scenario in which a requesting node seeks to register its
description with a service providing node.

FIG. 18c¢ illustrates an event-based service discovery
scenario in which an interested node receives a notification
of a change in service availability (e.g., the existence of a
service within a service-providing node).

FIG. 19aq illustrates the process of establishing trust using
a service binding with an implicitly trusted channel.

FIG. 195 illustrates the process of establishing trust based
on a request/response model.

FIG. 19c¢ illustrates the process of establishing trust based
on an explicit exchange of security credentials.

FIG. 20 illustrates policy-managed access to a service.

FIG. 21 illustrates a sample DRM node graph with
membership and key access links.

FIG. 22 illustrates an embodiment of the format of a DRM
VM code module.

FIG. 23 illustrates a system function profile hierarchy.

US 9,466,054 B1

7

FIG. 24 illustrates DRM music player application sce-
narios.

DETAILED DESCRIPTION

A detailed description of the inventive body of work is
provided below. While this description is provided in con-
junction with several embodiments, it should be understood
that the inventive body of work is not limited to any one
embodiment, but instead encompasses numerous alterna-
tives, modifications, and equivalents. For example, while
some embodiments are described in the context of con-
sumer-oriented content and applications, those skilled in the
art will recognize that the disclosed systems and methods are
readily adaptable for broader application. For example,
without limitation, these embodiments could be readily
adapted and applied to the context of enterprise content and
applications. In addition, while numerous specific details are
set forth in the following description in order to provide a
thorough understanding of the inventive body of work, some
embodiments may be practiced without some or all of these
details. Moreover, for the purpose of clarity, certain techni-
cal material that is known in the art has not been described
in detail in order to avoid unnecessarily obscuring the
inventive body of work.

1. Concepts

1.1. Web Services

The Web Services Architecture (WSA) is a specific
instance of a Service Oriented Architecture (SOA). An SOA
is itself a type of distributed system consisting of loosely
coupled, cooperating software agents. The agents in an SOA
may provide a service, request (consume) a service, or do
both. A service can be seen as a well-defined, self-contained
set of operations managed by an agent acting in a service
provider role. The operations are invoked over the network
at some network-addressable location, called an endpoint,
using standard protocols and data formats. By self-con-
tained, it is meant that the service does not depend directly
on the state or context of another service or encompassing
application.

Examples of established technologies that support the
concepts of an SOA include CORBA, DCOM, and J2EE.
WSA is attractive because it is not tied to a specific platform,
programming language, application protocol stack, or data
format convention. WSA uses standard formats based on
XML for describing services and exchanging messages
which promotes loose coupling and interoperability between
providers and consumers, and supports multiple standard
Internet protocols (notably HTTP), which facilitates deploy-
ment and participation in a potentially globally distributed
system.

An emerging trend is to view an SOA in the context of a
“plug-and-play” service bus. The service bus approach pro-
vides for orchestration of services by leveraging description,
messaging, and transport standards. The infrastructure may
also incorporate standards for discovery, transformation,
security, and perhaps others as well. Through the intrinsic
qualities of the ubiquitous standards incorporated into the
WSA, it is flexible, extensible, and scalable, and therefore
provides the appropriate foundation for constructing an
orchestrated service bus model. In this model, the funda-
mental unit of work (the service) is called a web service.

There are a wide number of definitions for a web service.
The following definition comes from the World Wide Web
Consortium (W3C) Web Services Architecture working
draft (Aug. 8, 2003—see www.w3.org/TR/ws-arch):

10

15

20

25

30

35

40

45

50

55

60

65

8

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-
processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner pre-
scribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serial-
ization in conjunction with other Web-related stan-
dards.

While the W3C definition provides a useful starting point, it
should be understood that the term “web services” is used
herein in a broader sense, without limitation, for example, to
the use of specific standards, formats, and protocols (e.g.,
WSDL, SOAP, XML, HTTP, etc.).

A particular web service can be described as an abstract
interface for a logically coherent set of operations that
provides a basis for a (possibly transient) relationship
between a service provider and a service requester.

Of course, actual web services have concrete implemen-
tations. The provider’s concrete implementation is some-
times referred to as the service (as distinguished from web
service). The software that actually implements the func-
tionality for the service provider is the provider agent and for
the service requester, the requester agent. The person or
organization that owns the agent is referred to as the
provider entity or requester entity, as appropriate. When
used by itself, requester or provider may refer to either the
respective entity or agent depending on context.

A web service exists to fulfill a purpose, and how this is
achieved is specified by the mechanics and semantics of the
particular web service message exchange. The mechanics
refers to the precise machine-processable technical specifi-
cations that allow the message exchange to occur over a
network. While the mechanics are precisely defined, the
semantics might not be. The semantics refers to the explicit
or implicit “contract,” in whatever form it exists, governing
the understanding and overall expectations between the
requester and provider entities for the web service.

Web services are often modeled in terms of the interac-
tions of three roles: (i) Service Provider; (ii) Service
Requester; and (iii) Service Registry. In this model, a service
provider “publishes” the information describing its web
service to a service registry. A service requester “finds” this
information via some discovery mechanism, and then uses
this information to “bind” to the service provider to utilize
the service. Binding simply means that the requester will
invoke the operations made available by the provider using
the message formatting, data mapping, and transport proto-
col conventions specified by the provider in the published
service description. The XML-based language used to
describe this information is called Web Services Description
Language (WSDL).

A service provider offers access to some set of operations
for a particular purpose described by a WSDL service
description; this service description is published to a registry
by any of a number of means so that the service may be
discovered. A registry may be public or private within a
specific domain.

A service registry is software that responds to service
search requests by returning a previously published service
description. A service requester is software that invokes
various operations offered by a provider according to the
binding information specified in the WSDL obtained from a
registry.

The service registry may exist only conceptually or may
in fact exist as real software providing a database of service
descriptions used to query, locate, and bind to a particular

US 9,466,054 B1

9

service. But whether a requester actually conducts an active
search for a service or whether a service description is
statically or dynamically provided, the registry is a logically
distinct aspect of the web services model. It is interesting to
note that in a real world implementation, a service registry
may be a part of the service requester platform, the service
provider platform, or may reside at another location entirely
identified by some well-known address or an address sup-
plied by some other means.

The WSDL service description supports loose coupling,
often a central theme behind an SOA. While ultimately a
service requester will understand the semantics of the inter-
face of the service it is consuming for the purpose of
achieving some desired result, the service description iso-
lates a service interface from specific service binding infor-
mation and supports a highly dynamic web services model.

A service-oriented architecture can be built on top of
many possible technology layers. As currently practiced,
web services typically incorporate or involve aspects of the
following technologies:

HTTP—a standard application protocol for most web
services communications. Although web services can be
deployed over various network protocols (e.g., SMTP, FTP,
etc), HTTP is the most ubiquitous, firewall-friendly trans-
port in use. For certain applications, especially within an
intranet, other network protocols may make sense depending
on requirements; nevertheless, HTTP is a part of almost any
web services platform built today.

XMIL—a standard for formatting and accessing the con-
tent (and information about the content) of structured infor-
mation. XML is a text-based standard for communicating
information between web services agents. Note that the use
of XML does not mean that message payloads for web
services may not contain any binary data; but it does mean
that this data will be formatted according to XML conven-
tions. Most web services architectures do not necessarily
dictate that messages and data be serialized to a character
stream—they may just as likely be serialized to a binary
stream where that makes sense—but if XML is being used,
these streams will represent XML documents. That is, above
the level of the transport mechanism, web service messaging
will often be conducted using XML documents.

Two XML subset technologies that are particularly impor-
tant to many web services are XML Namespaces and XML
Schema. XML-Namespaces are used to resolve naming
conflicts and assert specific meanings to elements contained
with XML documents. XML-Schema are used to define and
constrain various information items contained within an
XML document. Although it is possible (and optional) to
accomplish these objectives by other means, the use of XML
is probably the most common technique used today. The
XML document format descriptions for web service docu-
ments themselves are defined using XML-Schema, and most
real world web services operations and messages themselves
will be further defined incorporating XML -Schema.

SOAP—an XML-based standard for encapsulating
instructions and information into a specially formatted pack-
age for transmission to and handling by other receivers.
SOAP (Simple Object Access Protocol) is a standard mecha-
nism for packaging web services messages for transmission
between agents. Somewhat of a misnomer, its legacy is as a
means of invoking distributed objects and in that respect it
is indeed “simpler” than other alternatives; but the recent
trend is to consider SOAP as an XML -based wire protocol
for purposes that have transcended the original meaning of
the acronym.

10

40

45

65

10

SOAP defines a relatively lightweight convention for
structuring messages and providing information about con-
tent. Each SOAP document contains an envelope that is
divided into a header and a body. Although structurally
similar, the header is generally used for meta-information or
instructions for receivers related to the handling of the
content contained in the body.

SOAP also specifies a means of identifying features and
the processing needed to fulfill the features’ obligations. A
Message Exchange Pattern (MEP) is a feature that defines a
pattern for how messages are exchanged between nodes. A
common MEP is request-response, which establishes a
single, complete message transaction between a requesting
and a responding node (see http://www.w3.org/TR/2003/
REC-soap12-part2-20030624/#soapsupmep.).

WSDL—an XMI -based standard for describing how to
use a web service. From a WSDL perspective, a service is
related to a set of messages exchanged between service
requesters and providers. Messages are described in an
abstract manner that can be mapped to specific protocols.
The exchange of messages that invokes some functionality
is called an operation. A specific set of operations defines an
interface. An interface is tied to a concrete message format
and protocol by a named binding. The binding (the mapping
of an interface to a concrete protocol) is associated with a
URI appropriate to the protocol, resulting in an endpoint. A
collection of one or more related endpoints (mapping an
interface to concrete protocols at specific URIs) comprises a
service.

These definitions map to specific WSDL elements:

Types container element for type definitions

Message an abstract definition of the type of data
being sent

Operation an abstract description of an action
based on a combination of input, output,
and fault messages

portType an abstract set of operations - an
interface

binding specification of a concrete protocol and
data format for an interface (portType)

port the combination of a binding and an

actual network address - an endpoint

service a collection of related ports (endpoints)

WSDL defines a common binding mechanism and then
defines specific binding extensions for SOAP, HTTP GET/
POST, and MIME. Thus, binding does not necessarily mean
binding to a transport protocol directly, but to a specific wire
format. The most common binding for web services is
SOAP, although actual SOAP message exchanges generally
occur over HTTP on port 80 (via an http:// URI). However,
an interface can be directly bound to HTTP; alternatively,
for example, a binding for SOAP can use SMTP (via a
mailto:// URI). An implementation can even define its own
wire format and use a custom binding extension.

WSDL encourages maintainability and reusability by
providing support for an <import> element. Using import, a
WSDL document can be divided into separate pieces in
ways that make sense to an organization. For a cohesive web
services environment desiring some degree of separation
between an interlace definition and an implementation defi-
nition, the following separation into three documents is
reasonable:

A schema (.xsd) document—the root node is <schema>

and the namespace is “http://www.w3.0rg/2001/
XMLSchema.”

US 9,466,054 B1

11

A service interface description containing what is consid-
ered the reusable portion
<message>
<portType>
<binding>

A service implementation definition containing the spe-
cific service endpoint
<service>

WSDL interfaces are not exactly like Java (or IDL, or
some other programming language) interfaces. For example,
a Java interlace declaration specifies a set of methods that
must match at least a subset of the methods of a class
claiming to implement that interface. More than one class
can implement an interface, and each implementation can be
different; but the method signatures (method name and any
input or output types) generally must be identical. This is
mandated by the language and enforced at compile time,
runtime, or both.

A WSDL interface is different, and more like an actual
abstract class that alone is not fully useful. Various WSDL
interfaces, or portTypes, of a single web service are logically
related in the sense that the set of operation names should be
identical—as if the portType did, in fact, implement a
specific contract defined somewhere else—but no such
element actually exists and there is no mechanism for
enforcing portType symmetry. Each portType is generally
named to identify the type of binding it supports—even
though a portlType alone does not create a binding. The
portType operations for related portTypes are named the
same, but the input, output, and fault messages (if present)
are mapped to specific messages that contain named parts
also necessary for supporting a specific binding. This raises
the point that messages themselves are not completely
abstract. A web service may and often does need to define
similar but distinct messages for the various bindings
required.

As will be illustrated below, by leveraging emerging web
service and related standards, a system architecture can be
developed that facilitates the creation of networked interop-
erable media-related services that utilize a variety of differ-
ent protocols and interfaces across a wide range of hardware
and software platforms and operating environments.

1.2. Roles

Preferred embodiments of the present invention seek to
enable, promote, and/or actively support a peer-to-peer
environment in which peers can spontaneously offer a
variety of functionality by exposing services. One embodi-
ment of the framework discourages viewing peers as having
a fixed set of capabilities; and instead encourages a model
where a peer at any point in time is a participant in one or
more roles.

Arole can be defined by a set of services that a given peer
exposes in combination with a specific behavior pattern. At
any given moment a NEMO-enabled node may act in
multiple roles based on a variety of factors: its actual
implementation footprint providing the functionality for
supporting a given set of services, administrative configu-
ration, information declaring the service(s) the peer is
capable of exposing, and load and runtime policy on service
interfaces.

An explicit set of roles could be defined based on various
different types of services. Over time, as common patterns of
participation are determined and as new services are intro-
duced, a more formal role categorization scheme could be
defined. A preliminary set of roles that may be formalized
over time could include the following:

30

40

45

55

12

Client—a relatively simple role in which no services are
exposed, and the peer simply uses services of other peers.
Authorizer—this role denotes a peer acting as a Policy
Decision Point (PDP), determining if a requesting principal
has access to a specified resource with a given set of
pre-conditions and post-conditions.

Gateway—in certain situations a peer may not be able to
directly discover or interact with other service providers, for
reasons including: transport protocol incompatibility, inabil-
ity to negotiate a trusted context, or lack of the processing
capability to create and process the necessary messages
associated with a given service. A gateway is a peer acting
as a bridge to another peer in order to allow the peer to
interact with a service provider. From the perspective of
identity and establishing an authorized and trusted context
for operation, the requesting peer may actually delegate to
the gateway peer its identity and allow that peer to negotiate
and make decisions on its behalf. Alternatively, the gateway
peer may act as a simple relay point, forwarding or routing
requests and responses.

Orchestrator—in situations where interaction with a set of
service providers involves nontrivial coordination of ser-
vices (possibly including transactions, distributed state man-
agement, etc.), it may be beyond a peer’s capability to
participate. An orchestrator is a specialization of the gateway
role. A peer may request an orchestrator to act on its behalf,
intervening to provide one or more services. The orches-
trating peer may use certain additional NEMO components,
such as an appropriately configured Workflow Collator in
order to satisfy the orchestration requirements.

Given the goal of “providing instant gratification by
satisfying a request for any media, in any format, from any
source, at any place, at any time, on any device complying
with any agreeable set of usage rules,” the following infor-
mal model illustrates how this goal can be achieved using
embodiments of the NEMO framework. It will become
apparent from the highest level of the model (without
enumerating every aspect of how NEMO enables all of the
media services that one can imagine) how NEMO enables
lower-level services from different tiers in the model to be
assembled into richer end-to-end media services.

In one embodiment of this model there are four tiers of
service components: 1) Content Authoring, Assembly, and
Packaging services, 2) Web-based Content Aggregation and
Distribution services, 3) Home Gateway services, and 4)
Consumer Electronics devices.

Each of these four tiers typically has different require-
ments for security, rights management, service discovery,
service orchestration, user interface complexity, and other
service attributes. The first two tiers fit very roughly into the
models that we see for “traditional” web services, while the
last two tiers fit more into what we might call a personal
logical network model, with certain services of the home
gateway being at the nexus between the two types of models.
However, services for CE devices could occasionally appear
in any of the tiers.

One dilemma lies in the desire to specialize parts of the
framework for efficiency of implementation, while being
general enough to encompass an end-to-end solution. For
example, a UDDI directory and discovery approach may
work well for relatively static and centralized web services,
but for a more dynamic transient merging of personal
networks, discovery models such as those found in UPnP
and Rendezvous may be more appropriate. Thus, in some
embodiments multiple discovery standards are accommo-
dated within the framework

US 9,466,054 B1

13

Similarly, when rights management is applied to media
distribution through wholesale, aggregator, and retail distri-
bution sub-tiers, there can be many different types of com-
plex rights and obligations that need to be expressed and
tracked, suggesting the need for a highly expressive and
complex rights language, sophisticated content governance
and clearing services, and a global trust model. However,
rights management and content governance for the home
gateway and CE device tiers may entail a different trust
model that emphasizes fair use rights that are relatively
straightforward from the consumer’s point of view. Peer
devices in a personal logical network may want to interact
using the relatively simple trust model of that network, and
with the ability to interact with peers across a wide area
network using a global trust model, perhaps through proxy
gateway services. At the consumer end, complexity arises
from automated management of content availability across
devices, some of which are mobile and intermittently inter-
sect multiple networks. Thus, an effective approach to rights
management, while enabling end-to-end distribution, might
also be heterogeneous, supporting a variety of rights man-
agement services, including services that interpret expres-
sions of distribution rights and translate them, in context, to
individual consumer use rights in a transaction that is
orchestrated with a sales transaction, or perhaps another
event where a subscription right is exercised.

1.3. Logical Model

In one embodiment, the system framework consists of a
logically connected set of nodes that interact in a peer-to-
peer (P2P) fashion. Peer-to-peer computing is often defined
as the sharing of resources (such as hard drives and pro-
cessing cycles) among computers and other intelligent
devices. See http://www.intel.com/cure/peer.htm. Here, P2P
may be viewed as a communication model allowing network
nodes to symmetrically consume and provide services of all
sorts. P2P messaging and workflow collation allow rich
services to be dynamically created from a heterogeneous set
of more primitive services. This enables examination of the
possibilities of P2P computing when the shared resources
are services of many different types, even using different
service bindings.

Different embodiments can provide a media services
framework enabling stakeholders (e.g., consumers, content
providers, device manufacturers, and service providers) to
find one another, to interact, exchange value, and to coop-
erate in rich and dynamic ways. These different types of
services range from the basic (discovery, notification,
search, and file sharing) to more complex higher level
services (such as lockers, licensing, matching, authorization,
payment transaction, and update), and combinations of any
or all of these.

Services can be distributed across peer-to-peer commu-
nicating nodes, each providing message routing and orches-
tration using a message pump and workflow collator (de-
scribed in greater detail below) designed for this framework.

Nodes interact by making service invocation requests and
receiving responses. The format and payload of the request
and response messages are preferably defined in a standard
XML schema-based web service description language (e.g.,
WSDL) that embodies an extensible set of data types
enabling the description and composition of services and
their associated interface bindings. Many of the object types
in WSDL are polymorphic and can be extended to support
new functionality. The system framework supports the con-
struction of diverse communication patterns, ranging from
direct interaction with a single service provider to a complex
aggregation of a choreographed set of services from multiple

20

30

40

45

50

55

14

service providers. In one embodiment, the framework sup-
ports the basic mechanisms for using existing service cho-
reography standards (WSCI, BPEL, etc.), and also allows
service providers to use their own conventions.

The syntax of messages associated with service invoca-
tion are preferably described in a relatively flexible and
portable manner, as are the core data types used within the
system framework. In one embodiment, this is accomplished
using WSDL to provide relatively simple ways for refer-
encing semantic descriptions associated with described ser-
vices.

A service interface may have one or more service bind-
ings. In such an embodiment, a node may invoke the
interface of another node as long as that node’s interface
binding can be expressed in, e.g., WSDL, and as long as the
requesting node can support the conventions and protocols
associated with the binding. For example, if a node supports
a web service interface, a requesting node may be required
to support SOAP, HTTP, WS-Security, etc.

Any service interface may be controlled (e.g., rights
managed) in a standardized fashion directly providing
aspects of rights management. Interactions between nodes
can be viewed as governed operations.

Virtually any type of device (physical or virtual) can be
viewed as potentially NEMO-enabled, and able to imple-
ment key aspects of the NEMO framework. Device types
include, for example, consumer electronics equipment, net-
worked services, and software clients. In a preferred
embodiment, a NEMO-enabled device (node) typically
includes some or all of the following logical modules
(discussed in greater detail below):

Native Services API—the set of one or more services that
the device implements. There is no requirement that a
NEMO node expose any service directly or indirectly in the
NEMO framework.

Native Service Implementation—the corresponding set of
implementations for the native services APL

Service Adaptation Layer—the logical layer through which
an exposed subset of an entity’s native services is accessed
using one or more discoverable bindings described in, e.g.,
WSDL.

Framework Support Library—components that provide sup-
port functionality for working with the NEMO Framework
including support for invoking service interfaces, message
processing, service orchestration, etc.

1.4. Terminology

In one embodiment, a basic WSDL profile defines a
minimum “core” set of data types and messages for sup-
porting interaction patterns and infrastructural functionality.
Users may either directly, in an ad-hoc manner, or through
some form of standardization process, define other profiles
built on top of this core, adding new data and service types
and extending existing ones. In one embodiment, this core
profile includes definitions for some or all of the following
major basic data types:

Node—a representation of a participant in the system frame-
work. A node may act in multiple roles including that of a
service consumer and/or a service provider. Nodes may be
implemented in a variety of forms including consumer
electronic devices, software agents such as media players, or
virtual service providers such as content search engines,
DRM license providers, or content lockers.
Device—encapsulates the representation of a virtual or
physical device.

User—encapsulates the representation of a client user.
Request—encapsulates a request for a service to a set of
targeted Nodes.

US 9,466,054 B1

15

Request Input—encapsulates the input for a Request.
Response—encapsulates a Response associated with a
Request.

Request Result—encapsulates the Results
Response associated with some Request.
Service—encapsulates the representation of a set of well-
defined functionality exposed or offered by a provider Node.
This could be, for example, low-level functionality offered
within a device such as a cell phone (e.g. a voice recognition
service), or multi-faceted functionality offered over the
world-wide web (e.g. a shopping service). Services could
cover a wide variety of applications, including DRM-related
services such as client personalization and license acquisi-
tion.

Service Provider—an entity (e.g., a Node or Device) that
exposes some set of Services. Potential Service Providers
include consumer electronics devices, such as cell phones,
PDAs, portable media players and home gateways, as well
as network operators (such as cable head-ends), cellular
network providers, web-based retailers and content license
providers.

Service Interface—a well-defined way of interacting with
one or more Services.

Service Binding—encapsulates a specific way to communi-
cate with a Service, including the conventions and protocols
used to invoke a Service Interface. These may be repre-
sented in a variety of well-defined ways, such as the WS-I
standard XML protocol, RPC based on the WSDL definition,
or a function invocation from a DLL.

Service Access Point (SAP)—encapsulates the functionality
necessary for allowing a Node to make a Service Invocation
Request to a targeted set of Service Providing Nodes, and
receive a set of Responses.

Workflow Collator (WFC)—a Service Orchestration mecha-
nism that provides a common interface allowing a Node to
manage and process collections of Requests and Responses
related to Service invocations. This interface provides the
basic building blocks to orchestrate Services through man-
agement of the Messages associated with the Services.

In the context of a particular application, such as digital
rights management (DRM), a typical profile might include
various DRM-related services (described below) for the
following set of content protection and governance objects,
which represent entities in the system, protect content,
associate usage rules with the content, and determine if
access can be granted when requested:

Content Reference—encapsulates the representation of a
reference or pointer to a content item. Such a reference will
typically leverage other standardized ways of describing
content format, location, etc.

DRM Reference—encapsulates the representation of a ref-
erence or pointer to a description of a digital rights man-
agement format.

Link—Iinks between entities (e.g., Nodes).
Content—represents media or other content.

Content Key—represents encryption keys used to encrypt
Content.

Control—represents usage or other rules that govern inter-
action with Content.

Controller—represent associations between Control and
ContentKey objects

Projector—represent associations between Content and
ContentKey objects

In one embodiment, a core profile includes definitions for
some or all of the following basic Services:
Authorization—a request or response to authorize some
participant to access a Service.

within a

10

15

20

25

30

35

40

45

50

55

60

65

16

Governance—The process of exercising authoritative or
dominating influence over some item (e.g., a music file, a
document, or a Service operation), such as the ability to
download and install a software upgrade. Governance typi-
cally interacts with Services providing functionality such as
trust management, policy management, and content protec-
tion.

Message Routing—a Request or Response to provide mes-
sage routing functionality, including the ability to have the
Service Providing Node forward the message or collect and
assemble messages.

Node Registration—a Request or Response to perform reg-
istration operations for a Node, thereby allowing the Node
to be discovered through an Intermediate Node.

Node Discovery (Query)—a Request or Response related to
the discovery of Nodes.

Notification—a Request or Response to send or deliver
targeted Notification messages to a given set of Nodes.
Security Credential Exchange—a Request or Response
related to allowing Nodes to exchange security related
information, such as key pairs, certificates, or the like.
Service Discovery (Query)—a Request or Response related
to the discovery of Services provided by some set of one or
more Nodes.

Service Orchestration—The assembly and coordination of
Services into manageable, coarser-grained Services, reus-
able components, or full applications that adhere to rules
specified by a service provider. Examples include rules
based on provider identity, type of Service, method by which
Services are accessed, order in which Services are com-
posed, etc.

Trust Management—yprovides a common set of conventions
and protocols for creating authorized and trusted contexts
for interactions between Nodes. In some embodiments,
NEMO Trust Management may leverage and/or extend
existing security specifications and mechanisms, including
WS-Security and WS-Policy in the web services domain.
Upgrade—represents a Request or Response related to
receiving a functionality upgrade. In one embodiment, this
service is purely abstract, with other profiles providing
concrete representations.

1.5. Nlustrative Interaction Between Nodes

As will be discussed in greater detail below, the basic
logical interaction between two system nodes, a service
requester and a service provider, typically includes the
following sequence of events. From the perspective of the
service requesting node:

The service requesting node makes a service discovery
request to locate any NEMO-enabled nodes that can provide
the necessary service using the specified service bindings. A
node may choose to cache information about discovered
services. The interface/mechanism for service discovery
between nodes can be just another service that a NEMO
node chooses to implement.

Once candidate service providing nodes are found, the
requesting node may choose to dispatch a request to one or
more of the service providing nodes based on a specific
service binding.

In one embodiment, two nodes that wish to communicate
securely with each other will establish a trusted relationship
for the purpose of exchanging WSDL messages. For
example, they may negotiate a set of compatible trust
credentials (e.g., X.500 certificates, device keys, etc.) that
may be used in determining identity, verifying authorization,
establishing a secure channel, etc. In some cases, the nego-
tiation of these credentials may be an implicit property of the
service interface binding (e.g., WS-Security if WS-1 XML

US 9,466,054 B1

17

Protocol is used, or an SSL request between two well-known
nodes). In other cases, the negotiation of trust credentials
may be an explicitly separate step. In one embodiment, it is
up to a given node to determine which credentials are
sufficient for interacting with another node, and to make the
decision that it can trust a given node.

The requesting node creates the appropriate WSDL
request message(s) that correspond to the requested service.

Once the messages are created, they are dispatched to the
targeted service providing node(s). The communication
style of the request may, for example, be synchronous or
asynchronous RPC style, or message-oriented based on the
service binding. Dispatching of service requests and receiv-
ing of responses may be done directly by the device or
through the NEMO Service Proxy. The service proxy (de-
scribed below) provides an abstraction and interface for
sending messages to other participants, and may hide certain
service binding issues, such as compatible message formats,
transport mechanisms, message routing issues, etc.

After dispatching a request, the requesting node will
typically receive one or more responses. Depending on the
specifics of the service interface binding and the requesting
node’s preferences, the response(s) may be returned in a
variety of ways, including, for example, an RPC-style
response or a notification message. The response, en-route to
the targeted node(s), may pass through other intermediate
nodes that may provide a number of relevant services,
including, e.g., routing, trust negotiation, collation and cor-
relation functions, etc.

The requesting node validates the response(s) to ensure it
adheres to the negotiated trust semantics between it and the
service providing node.

Appropriate processing is then applied based on the
message payload type and contents.

From the perspective of the service providing node, the
sequence of events typically would include the following:

Determine if the requested service is supported. In one
embodiment, the NEMO framework does not mandate the
style or granularity of how a service interface maps as an
entry point to a service. In the simplest case, a service
interface may map unambiguously to a given service and the
act of binding to and invoking it may constitute support for
the service. However, in some embodiments a single service
interface may handle multiple types of requests; and a given
service type may contain additional attributes that need to be
examined before a determination can be made that the node
supports the specifically desired functionality.

In some cases it may be necessary for the service provider
to determine if it trusts the requesting node and to negotiate
a set of compatible trust credentials. In one embodiment,
regardless of whether the service provider determines trust,
any policy associated with the service interface will still
apply.

The service provider determines and dispatches authori-
zation request(s) to those node(s) responsible for authorizing
access to the interface in order to determine if the requesting
node has access. In many situations, the authorizing node
and the service providing node will be the same entity, and
the dispatching and processing of the authorization request
will be local operations invoked through a lightweight
service interface binding such as a C function entry point.

Upon receiving the authorization response, if the request-
ing node is authorized, the service provider will fulfill the
request. If not, an appropriate response message might be
generated.

The response message is returned based on the service
interface binding and requesting node’s preferences. En

10

15

20

25

30

35

40

45

50

55

60

65

18

route to the requesting node, the message may pass through
other intermediate nodes that may provide necessary or
“value added” services. For example an intermediate node
might provide routing, trust negotiation, or delivery to a
notification processing node that can deliver the message in
a way acceptable to the requesting node. An example of a
“value added” service is a coupon service that appends
coupons to the message if it knows of the requesting node’s
interests.

2. System Architecture

Consider a sample embodiment of the NEMO system
framework, as illustrated in FIG. 1, implementing a DRM
application.

As noted above, NEMO nodes may interact by making
service invocation requests and receiving responses. The
NEMO framework supports the construction of diverse and
rich communication patterns ranging from a simple point to
point interaction with a single service provider to a complex
aggregation of a choreographed set of services from multiple
service providers.

In the context of FIG. 1, the NEMO nodes interact with
one another to provide a variety of services that, in the
aggregate, implement a music licensing system. Music
stored in Consumer Music Locker 110 can be extracted by
Web Music Retailer 120 and provided to end users at their
homes via their Entertainment Home Gateway 130. Music
from Consumer Music Locker 110 may include rules that
govern the conditions under which such music may be
provided to Web Music Retailer 120, and subsequently to
others for further use and distribution. Entertainment Home
Gateway 130 is the vehicle by which such music (as well as
video and other content) can be played, for example, on a
user’s home PC (e.g., via PC Software Video Player 140) or
on a user’s portable playback device (e.g., Portable Music
Player 150). A user might travel, for example, with Portable
Music Player 150 and obtain, via a wireless Internet con-
nection (e.g., to Digital Rights License Service 160), a
license to purchase additional songs or replay existing songs
additional times, or even add new features to Portable Music
Player 150 via Software Upgrade Service 170.

NEMO nodes can interact with one another, and with
other devices, in a variety of different ways. A NEMO host,
as illustrated in FIG. 24, is some type of machine or device
hosting at least one NEMO node. A host may reside within
a personal area network 210 or at a remote location 220
accessible via the Internet. A host could, for example, be a
server 230, a desktop PC 240, a laptop 250, or a personal
digital assistant 260.

A NEMO node is a software agent that can provide
services to other nodes (such as host 235 providing a 3"
party web service) as well as invoke other nodes’ services
within the NEMO-managed framework. Some nodes 270
are tethered to another host via a dedicated communication
channel, such as Bluetooth. These hosts 240 and 250 are
equipped with network connectivity and sufficient process-
ing power to present a virtual node to other participating
NEMO nodes.

As illustrated in FI1G. 25, a NEMO node can be a full peer
within the local or personal area network 210. Nodes share
the symmetric capability of exposing and invoking services;
however, each node generally does not offer identical sets of
services. Nodes may advertise and/or be specifically queried
about the services they perform.

If an Internet connection is present, as shown in FIG. 2¢,
then local NEMO nodes (e.g., within personal area network
210) can also access the services of remote nodes 220.
Depending on local network configuration and policy, it is

US 9,466,054 B1

19
also possible for local and remote nodes (e.g., Internet-
capable NEMO hosts 280) to interoperate as NEMO peers.

As illustrated in FIG. 24, not all NEMO nodes may be on
hosts capable of communicating with other hosts, whether
local or remote. A NEMO host 280 can provide a gateway
service through which one node can invoke the services of
another, such as tethered node 285 or nodes in personal area
network 210.

As illustrated in FIG. 2e, a node 295 on a tethered device
may access the services of other nodes via a gateway, as
discussed above. It may also be accessed by other nodes via
a proxy service on another host 290. The proxy service
creates a virtual node running on the NEMO host. These
proxy nodes can be full NEMO peers.

As illustrated in FIG. 2f, a NEMO host may provide
dedicated support for tethered devices via NEMO node
adapters. A private communication channel 296 is used
between host/NEMO device adapter 297 and tethered node
298 using any suitable protocol. Tethered node 298 does not
see, nor is it visible to, other NEMO peer nodes.

We next consider exemplary digital rights management
(DRM) functionality that can be provided by NEMO-en-
abled devices in certain embodiments, or that can be used
outside the NEMO context. As previously described, one of
the primary goals of a preferred embodiment of the NEMO
system framework is to support the development of secure,
interoperable interconnections between media-related ser-
vices spanning both commercial and consumer-oriented
network tiers. In addition to service connectivity, interoper-
ability between media-related services will often require
coordinated management of usage rights as applied to the
content available through those services. NEMO services
and the exemplary DRM engine described herein can be
used in combination to achieve interoperability that allows
devices based on the NEMO framework to provide consum-
ers with the perception of a seamless rendering and usage
experience, even in the face of a heterogeneous DRM and
media format infrastructure.

In the context of a DRM application, as illustrated in FIG.
3, a network of NEMO-enabled DRM devices may include
content provider/server 310, which packages content for
other DRM devices, as well as consumer PC player 330 and
consumer PC packager/player 320, which can not only play
protected content, but can also package content for delivery
to portable device 340.

Within each DRM device, the DRM engine performs
specific DRM functions (e.g., enforcing license terms, deliv-
ering keys to the host application, etc.), and relies on the host
application for those services which can be most effectively
provided by the host, such as encryption, decryption, and file
management.

As will be discussed in greater detail below, in one
embodiment the DRM engine includes a virtual machine
(VM) designed to determine whether certain actions on
protected content are permissible. This Control VM can be
implemented as a simple stack-based machine with a mini-
mal set of instructions. In one embodiment, it is capable of
performing logical and arithmetic calculations, as well as
querying state information from the host environment to
check parameters such as system time, counter state, and so
forth.

In one embodiment, the DRM engine utilizes a graph-
based algorithm to verify relationships between entities in a
DRM value chain. FIG. 4 illustrates a conceptual embodi-
ment of such a graph. The graph comprises a collection of
nodes or vertices, connected by links. Each entity in the
system can be represented by a vertex object. Only entities

5

10

15

20

25

30

35

40

45

50

55

60

20

that need to be referenced by link objects, or be the recipient
of cryptographically targeted information, need to have
corresponding vertex objects. In one embodiment, a vertex
typically represents a user, a device, or a group. Vertex
objects also have associated attributes that represent certain
properties of the entity associated with the vertex.

For example, FIG. 4 shows two users (Xan and Knox),
two devices (the Mac and a portable device), and several
entities representing groups (members of the Carey family,
members of the public library, subscribers to a particular
music service, RIAA-approved devices, and devices manu-
factured by a specific company). Each of these has a vertex
object associated with it.

The semantics of the links may vary in an application-
specific manner. For example, the directed edge from the
Mac vertex to the Knox vertex may mean that Knox is the
owner of the Mac. The edge from Knox to Public Library
may indicate that Knox is a member of the Public Library.
In one embodiment the DRM engine does not impose or
interpret these semantics—it simply ascertains the existence
or non-existence of paths within the graph. This graph of
vertices can be considered an “authorization” graph in that
the existence of a path or relationship (direct or indirect)
between two vertices may be interpreted as an authorization
for one vertex to access another vertex.

For example, because Knox is linked to the Carey family
and the Carey family is linked to the Music Service, there is
a path between Knox and the Music Service. The Music
Service vertex is considered reachable from another vertex
when there is a path from that vertex to the Music Service.
This allows a control to be written that allows permission to
access protected content based on the condition that the
Music Service be reachable from the portable device in
which the application that requests access (e.g., a DRM
client host application) is executing.

For example, a content owner may create a control
program to be interpreted by the Control VM that allows a
particular piece of music to be played if the consuming
device is owned by a member of the Public Library and is
RIAA-approved. When the Control VM running on the
device evaluates this control program, the DRM engine
determines whether links exist between Portable Device and
Public Library, and between Portable Device and RIAA
Approved. The edges and vertices of the graph may be static
and built into devices, or may be dynamic and discovered
through services communicating with the host application.

By not imposing semantics on the vertices and links, the
DRM engine can enable great flexibility. The system can be
adapted to many usage models, from traditional delegation-
based policy systems to authorized domains and personal
area networks.

In one embodiment, the DRM client can also reuse the
authorization graph for content protection key derivation.
System designers may chose to allow the existence of a link
to also indicate the sharing of certain cryptographic infor-
mation. In such cases, the authorization graph can be used to
derive content keys without explicit cryptographic retarget-
ing to consuming devices.

3. Node Architecture

3.1. Overview

Any type of device (physical or virtual), including con-
sumer electronics equipment, networked services, or soft-
ware clients, can potentially be NEMO-enabled, which
means that the device’s functionality may be extended in
such a way as to enable participation in the NEMO system.

US 9,466,054 B1

21

In one embodiment, a NEMO-enabled device (node) is
conceptually comprised of certain standard modules, as
illustrated in FIG. Sa.

Native Services API 510 represents the logical set of one
or more services that the device implements. There is no
requirement that a NEMO node expose any service directly
or indirectly. Native Service Implementation 520 represents
the corresponding set of implementations for the native
services API.

Service Access Point 530 provides support for invoking
exposed service interlaces. It encapsulates the functionality
necessary for allowing a NEMO node to make a service
invocation request to a targeted set of service-providing
NEMO nodes and to receive a set of responses. NEMO-
enabled nodes may use diverse discovery, name resolution,
and transport protocols, necessitating the creation of a
flexible and extensible communication API. The Service
Access Point can be realized in a variety of ways tailored to
a particular execution environment and application frame-
work style. One common generic model for its interface will
be an interface capable of receiving XML messages in some
form and returning XML messages. Other models with more
native interlaces can also be supported.

NEMO Service Adaptation Layer 540 represents an
optional layer through which an exposed subset of an
entity’s native services are accessed using one or more
discoverable bindings. It provides a level of abstraction
above the native services API, enabling a service provider to
more easily support multiple types of service interface
bindings. In situations where a service adaptation layer is not
present, it may still be possible to interact with the service
directly through the Service Access Point 530 if it supports
the necessary communication protocols.

The Service Adaptation Layer 540 provides a common
way for service providers to expose services, process
requests and responses, and orchestrate services in the
NEMO framework. It is the logical point at which services
are published, and provides a foundation on which to
implement other specific service interface bindings.

In addition to providing a common way of exposing a
service provider’s native services to other NEMO-enabled
nodes, Service Adaptation Layer 540 also provides a natural
place on which to layer components for supporting addi-
tional service interface bindings 560, as illustrated in FIG.
5b. By supporting additional service interface bindings, a
service provider increases the likelihood that a compatible
binding will be able to be negotiated and used either by a
Service Access Point or through some other native APIL.

Referring back to FIG. 5a, Workflow Collator 550 pro-
vides supporting management of service messages and ser-
vice orchestration. It provides a common interface allowing
a node to manage and process collections of request and
response messages. This interface in turn provides the basic
building blocks to orchestrate services through management
of the messages associated with those services. This inter-
face typically is implemented by a node that supports
message routing functionality as well as the intermediate
queuing and collating of messages.

In some embodiments, the NEMO framework includes a
collection of optional support services that facilitate an
entity’s participation in the network. Such services can be
classified according to various types of functionality, as well
as the types of entities requiring such services (e.g., services
supporting client applications, as opposed to those needed
by service providers). Typical supporting services include
the following:

10

15

20

25

30

40

45

50

55

60

22

WSDL Formatting and Manipulation Routines—provide
functionality for the creation and manipulation of WSDL-
based service messages.

Service Cache—provides a common interface allowing a
node to manage a collection of mappings between discov-
ered nodes and the services they support.

Notification Processor Interface—provides a common ser-
vice provider interface for extending a NEMO node that
supports notification processing to some well-defined noti-
fication processing engine.

Miscellaneous Support Functionality—including routines
for generating message IDs, timestamps, etc.

3.2. Basic Node Interaction

Before examining the individual architectural elements of
NEMO nodes in greater detail, it is helpful to understand the
manner by which such nodes interact and communicate with
one another. Diverse communication styles are supported,
ranging from synchronous and asynchronous RPC-style
communication, to one-way interface invocations and client
callbacks.

Asynchronous RPC Delivery Style—this model is par-
ticularly appropriate if there is an expectation that fulfilling
the request will take an extended period of time and the
client does not want to wait. The client submits a request
with the expectation that it will be processed in an asyn-
chronous manner by any service-providing nodes. In this
case, the service-providing endpoint may respond indicating
that it does not support this model, or, if the service-
providing node does support this model, it will return a
response that will carry a ticket that can be submitted to the
given service-providing node in subsequent requests to
determine if it has a response to the client’s request.

In one embodiment, any service-providing endpoint that
does support this model is obligated to cache responses to
pending client requests based on an internal policy. If a
client attempts to redeem a ticket associated with such a
request and no response is available, or the response has
been thrown away by the service-providing node, then an
appropriate error response is returned. In this embodiment,
it is up to the client to determine when it will make such
follow-on requests in attempting to redeem the ticket for
responses.

Synchronous RPC Delivery Style—the client submits a
request and then waits for one or more responses to be
returned. A service-providing NEMO-enabled endpoint may
respond indicating that it does not support this model.

Message-Based Delivery Style—the client submits a
request indicating that it wants to receive any responses via
a message notification associated with one or more of its
notification handling service interfaces. A service-providing
NEMO-enabled endpoint may respond indicating that it
does not support this model.

From the client application’s perspective, none of the
interaction patterns above necessitates an architecture that
must block and wait for responses, or must explicitly poll. It
is possible to use threading or other platform-specific
mechanisms to model both blocking and non-blocking
semantics with the above delivery style mechanisms. Also,
none of the above styles is intended to directly address issues
associated with the latency of a given communication chan-
nel—only potential latency associated with the actual ful-
fillment of a request. Mechanisms to deal with the issues
associated with communication channel latency should be
addressed in the specific implementation of a component
such as the Service Access Point, or within the client’s
implementation directly.

US 9,466,054 B1

23

3.3. Service Access Point

As noted above, a Service Access Point (SAP) can be used
as a common, reusable API for service invocation. It can
encapsulate the negotiation and use of a transport channel.
For example, some transport channels may require SSL
session setup over TCP/IP, while some channels may only
support relatively unreliable communication over UDP/IP,
and still others may not be IP-based at all.

A SAP can encapsulate the discovery of an initial set of
NEMO nodes for message routing. For example, a cable
set-top box may have a dedicated connection to the network
and mandate that all messages flow through a specific route
and intermediary. A portable media player in a home net-
work may use UPnP discovery to find multiple nodes that
are directly accessible. Clients may not be able, or may
choose not, to converse directly with other NEMO nodes by
exchanging XML messages. In this case, a version of the
SAP may be used that exposes and uses whatever native
interface is supported.

In a preferred embodiment, the SAP pattern supports the
following two common communication models (although
combinations of the two, as well as others, may be sup-
ported): (i) Message Based (as discussed above)—where the
SAP forms XML request messages and directly exchanges
NEMO messages with the service provider via some inter-
face binding; or (ii) Native—where the SAP may interact
with the service provider through some native communica-
tion protocol. The SAP may internally translate to/from
XML messages defined elsewhere within the framework.

A sample interaction between two NEMO peer nodes is
illustrated in FIG. 6a. Client node 610 interacts with service-
providing node 660 using NEMO service access point (SAP)
620. In this example, web service protocols and standards
are used both for exposing services and for transport.
Service-providing node 660 uses its web services layer 670
(using, e.g., WSDL and SOAP-based messaging) to expose
its services to clients such as node 610. Web services layer
630 of client node 610 creates and interprets SOAP mes-
sages, with help from mapping layer 640 (which maps
SOAP messages to and from SAP interface 620) and trust
management processing layer 650 (which could, for
example, leverage WS-Security using credentials conveyed
within SOAP headers).

Another example interaction between NEMO nodes is
illustrated in FIG. 6b. Service-providing node 682 interacts
with client node 684 using SAP 686. In this example,
service-providing node 682 includes a different but interop-
erable trust management layer than client 684. In particular,
service-providing node 682 includes both a trust engine 688
and an authorization engine 690. In this example, trust
engine 688 might be generally responsible for performing
encryption and decryption of SOAP messages, for verifying
digital certificates, and for performing other basic crypto-
graphic operations, while authorization engine 690 might be
responsible for making higher-level policy decisions. In the
example shown in FIG. 65, client node 684 includes a trust
engine 692, but not an authorization engine. Thus, in this
example, client node 684 might be capable of performing
basic cryptographic operations and enforcing relatively
simple policies (e.g., policies related to the level of message
authenticity, confidentiality, or the like), but might rely on
service providing node 682 to evaluate and enforce higher
order policies governing the client’s use of, and interaction
with, the services and/or content provided by service pro-
viding node 682. It should be appreciated that FIG. 65 is
provided for purposes of illustration and not limitation, and
that in other embodiments client node 684 might also

10

15

20

25

30

35

40

45

50

55

60

65

24

include an authorization engine, as might be the case if the
client needed to adhere to a set of obligations related to a
specified policy. Thus, it can be seen that different NEMO
peers can contain different parts of the trust management
framework depending on their requirements. FIG. 65 also
illustrates that the communication link between nodes can be
transport agnostic. Even in the context of a SOAP processing
model, any suitable encoding of data and/or processing rules
can be used. For example, the XML security model could be
replaced with another security model that supported a dif-
ferent encoding scheme.

A Service Access Point may be implemented in a variety
of forms, such as within the boundaries of a client (in the
form of a shared library) or outside the boundaries of the
client (in the form of an agent running in a different process).
The exact form of the Service Access Point implementation
can be tailored to the needs of a specific type of platform or
client. From a client’s perspective, use of the Service Access
Point may be optional, although in general it provides
significant utility, as illustrated below.

The Service Access Point may be implemented as a static
component supporting only a fixed set of service protocol
bindings, or it may be able to support new bindings dynami-
cally.

Interactions involving the Service Access Point can be
characterized from at least two perspectives—a client-side
which the requesting participant uses, and a service-side
which interacts with other NEMO-enabled endpoints
(nodes).

In one client-side embodiment, illustrated in FIG. 7a,
Service Access Point 710 directly exchanges XML messages
with client 720. Client 720 forms request messages 740
directly and submits them to Service Access Point 710,
which generates and sends one or more response messages
750 to client 720, where they are collected, parsed and
processed. Client 720 may also submit (when making
requests) explicit set(s) of service bindings 730 to use in
targeting the delivery of the request. These service bindings
may have been obtained in a variety of ways. For example,
client 720 can perform service-discovery operations and
then select which service bindings are applicable, or it can
use information obtained from previous responses.

In another client-side embodiment, illustrated in FIG. 75,
Service Access Point 760 directly supports a native protocol
770 of client 780. Service Access Point 760 will translate
messages internally between XML and that native protocol
770, thereby enabling client 780 to participate within the
NEMO system. To effect such support, native protocol 770
(or a combination of native protocol 770 and the execution
environment) must provide any needed information in some
form to Service Access Point 760, which generates an
appropriate request and, if necessary, determines a suitable
target service binding.

On the service-side, multiple patterns of interaction
between a client’s Service Access Point and service-provid-
ing NEMO-enabled endpoints can be supported. As with the
client-side, the interaction patterns can be tailored and may
vary based on a variety of criteria, including the nature of the
request, the underlying communication network, and the
nature of the application and/or transport protocols associ-
ated with any targeted service bindings.

A relatively simple type of service-side interaction pattern
is illustrated in FIG. 7¢, in which Service Access Point 711
communicates directly with the desired service-providing
node 712 in a point-to-point manner.

Turning to FIG. 74, Service Access Point 721 may initiate
communication directly with (and may receive responses

US 9,466,054 B1

25

directly from) multiple potential service providers 725. This
type of interaction pattern may be implemented by relaying
multiple service bindings from the client for use by Service
Access Point 721; or a broadcast or multicast network could
be utilized by Service Access Point 721 to relay messages.
Based on preferences specified in the request, Service
Access Point 721 may choose to collect and collate
responses, or simply return the first acceptable response.

In FIG. 7e, Service Access Point 731 doesn’t directly
communicate with any targeted service-providing endpoints
735. Instead, requests are routed through an intermediate
node 733 which relays the request, receives any responses,
and relays them back to Service Access Point 731.

Such a pattern of interaction may be desirable if Service
Access Point 731 is unable or unwilling to support directly
any of the service bindings associated with service-provid-
ing endpoints 735, but can establish a relationship with
intermediate node 733, which is willing to act as a gateway.
Alternatively, the client may not be able to discover or
otherwise determine the service bindings for any suitable
service-providing nodes, but may be willing to allow inter-
mediate node 733 to attempt to discover any suitable service
providers. Finally, Service Access Point 731 may want to
take advantage of intermediate node 733 because it supports
more robust collection and collating functionality, which in
turn permits more flexible communication patterns between
Service Access Point 731 and service providers such as
endpoint nodes 735.

In addition to the above basic service-side interaction
patterns, combinations of such patterns or new patterns can
be implemented within the Service Access Point. Although
the Service Access Point is intended to provide a common
interface, its implementation will typically be strongly tied
to the characteristics of the communication models and
associated protocols employed by given NEMO-enabled
endpoints.

In practice, the Service Access Point can be used to
encapsulate the logic for handling the marshalling and
un-marshaling of /O related data, such as serializing objects
to appropriate representations, such as an XML representa-
tion (with a format expressed in WSDL), or one that
envelopes XML -encoded objects in the proper format.

In a preferred embodiment, the SAP also encapsulates
logic for communication via one or more supported appli-
cation, session, and/or transport protocols, such as service
invocation over HTTP using SOAP enveloping.

Finally, in some embodiments, the SAP may encapsulate
logic for providing message integrity and confidentiality,
such as support for establishing SSI/TLS sessions and/or
signing/verifying data via standards such as XML-Signature
and XML-Encryption. When the specific address of a ser-
vice interface is unknown or unspecified (for example, when
invoking a service across multiple nodes based on some
search criteria), the SAP may encapsulate the logic for
establishing an initial connection to a default/initial set of
NEMO nodes where services can be discovered or resolved.

The following is an example, non-limiting embodiment of
a high-level API description exported by one SAP embodi-
ment:

ServiceAccessPoint::Create(Environment|])—=ServiceAc-
cessPoint—this is a singleton interface that returns an ini-
tialized instance of a SAP. The SAP can be initialized based
on an optional set of environmental parameters.

ServiceAccessPoint::InvokeService(Service Request Mes-
sage, Boolean)—Service Response Message—a synchro-
nous service invocation API is supported where the client
(using WSDL) forms an XML service request message, and

40

45

26

receives an XML message in response. The API also accept
a Boolean flag indicating whether or not the client should
wait for a response. Normally, the flag will be true, except
in the case of messages with no associated response, or
messages to which responses will be delivered back asyn-
chronously via another channel (such as via notification).
The resulting message may also convey some resulting error
condition.

ServiceAccessPoint:: ApplylntegrityProtection(Boolean,
Desc|])—+Boolean—This API allows the caller to specify
whether integrity protection should be applied, and to which
elements in a message it should be applied.
ServiceAccessPoint:: ApplyConfidentiality(Boolean,

Desc|])—+Boolean—This API allows the caller to specify
whether confidentiality should be applied and to which
objects in a message it should be applied.

ServiceAccessPoint::SetKeyCallbacks(SigningKeyCallback,
SignatureVerificationKeyCallback,
EncryptionKeyCallback,
DecryptionKeyCallback) — Boolean

As indicated in the previous APIs, when a message is sent
or received it may contain objects which require integrity
protection or confidentiality. This API allows the client to set
up any necessary hooks between itself and the SAP to allow
the SAP to obtain keys associated with a particular type of
trust management operation. In one embodiment, the inter-
face is based on callbacks supporting integrity protection
through digital signing and verification, and confidentiality
through encryption and decryption. In one embodiment,
each of the callbacks is of the form:

KeyCallback(KeyDesc)—=Key| |
where KeyDesc is an optional object describing the key(s)
required and a list of appropriate keys is returned. Signatures
are validated as part of receiving response services messages
when using the InvokeService(. . .) API. If a message
element fails verification, an XML message can be returned
from InvokeService(. . .) indicating this state and the
elements that failed verification.

3.4. Service Adaptation Layer

As noted above, the Service Adaptation Layer provides a
common way for service providers to expose their services,
process requests and generate responses for services, and
orchestrate services in the NEMO framework. It also pro-
vides a foundation on which other specific service interface
bindings can be implemented. In one embodiment, WSDL is
used to describe a service’s interface within the system.

Such a service description might, in addition to defining
how to bind to a service on a particular interface, also
include a list of one or more authorization service providers
that will be responsible for authorizing access to the service,
a pointer to a semantic description of the purpose and usage
of the service, and a description of the necessary orchestra-
tion for composite services resulting from the choreo-
graphed execution of one or more other services.

In addition to serving as the logical point at which
services are exposed, the Service Adaptation Layer also
preferably encapsulates the concrete representations of the
NEMO data types and objects specified in NEMO service
profiles for platforms that are supported by a given partici-
pant. It also contains a mechanism for mapping service-
related messages to the appropriate native service imple-
mentation.

In one embodiment, the NEMO framework does not
mandate how the Service Adaptation Layer for a given

US 9,466,054 B1

27

platform or participant is realized. In situations where a
service-providing node does not require translation of its
native service protocols—i.e., exposing its services only to
client nodes that can communicate via that native protocol—
then that service-providing node need not contain a Service
Adaptation Layer.

Otherwise, its Service Adaptation Layer will typically
contain the following elements, as illustrated in FIG. 8:
Entry Points—a layer encapsulating the service interface
entry points 810 and associated WSDL bindings. Through
these access points, other nodes invoke services, pass
parameter data, and collect results.

Message Processing Logic—a layer 820 that corresponds to
the logic for message processing, typically containing a
message pump 825 that drives the processing of messages,
some type of XML data binding support 826, and low level
XML parser and data representation support 827.

Native Services—a layer representing the native services
available (onto which the corresponding service messages
are mapped), including a native services API 830 and
corresponding implementation 840.

3.5. Workflow Collator

In a preferred embodiment, a Workflow Collator (WFC)
helps fulfill most nontrivial NEMO service requests by
coordinating the flow of events of a request, managing any
associated data including transient and intermediate results,
and enforcing the rules associated with fulfillment.
Examples of this type of functionality can be seen in the
form of transaction coordinators ranging from simple trans-
action monitors in relational databases to more generalized
monitors as seen in Microsoft MTS/COM+.

In one embodiment, the Workflow Collator is a program-
mable mechanism through which NEMO nodes orchestrate
the processing and fulfillment of service invocations. The
WFC can be tailored toward a specific NEMO node’s
characteristics and requirements, and can be designed to
support a variety of functionality ranging from traditional
message queues to more sophisticated distributed transac-
tion coordinators. A relatively simple WFC might provide an
interface for storage and retrieval of arbitrary service-related
messages. By building on this, it is possible to support a
wide variety of functionality including (i) collection of
service requests for more effective processing; (ii) simple
aggregation of service responses into a composite response;
(iii) manual orchestration of multiple service requests and
service responses in order to create a composite service; and
(iv) automated orchestration of multiple service requests and
service responses in order to create a composite service.

A basic service interaction pattern begins with a service
request arriving at some NEMO node via the node’s Service
Adaptation Layer. The message is handed off to the WSDL
Message Pump that initially will drive and in turn be driven
by the WFC to fulfill the request and return a response. In
even more complex scenarios, the fulfillment of a service
request might require multiple messages and responses and
the participation of multiple nodes in a coordinated fashion.
The rules for processing requests may be expressed in the
system’s service description language or using other service
orchestration description standards such as BPEL.

When a message is given to the WFC, the WFC deter-
mines the correct rules for processing this request. Depend-
ing upon the implementation of the WFC, the service
description logic may be represented in the form of a fixed
state machine for a set of services that the node exposes or
it may be represented in ways that support the processing of
a more free form expression of the service processing logic.

35

40

45

55

60

28

In a preferred embodiment the WFC architecture is modu-
lar and extensible, supporting plug-ins. In addition to inter-
preting service composition and processing rules, the WFC
may need to determine whether to use NEMO messages in
the context of initiating a service fulfillment processing
lifecycle, or as input in the chain of an ongoing transaction.
In one embodiment, NEMO messages include IDs and
metadata that are used to make these types of determina-
tions. NEMO messages also can be extended to include
additional information that may be service transaction spe-
cific, facilitating the processing of messages.

As discussed in greater detail below, notification services
are directly supported by various embodiments of the
NEMO system. A notification represents a message targeted
at interested NEMO-enabled nodes received on a designated
service interface for processing. Notifications may carry a
diverse set of payload types for conveying information and
the criteria used to determine if a node is interested in a
notification is extensible, including identity-based as well as
event-based criteria.

In one embodiment, illustrated in FIG. 9a, a service-
providing NEMO node 910 provides a service that requires
an orchestration process by its Workflow Collator 914 (e.g.,
the collection and processing of results from two other
service providers) to fulfill a request for that service from
client node 940.

When NEMO-enabled application 942 on client node 940
initiates a request to invoke the service provided by service
provider 910, Workflow Collator 914 in turn generates
messages to initiate its own requests (on behalf of applica-
tion 942), respectively, to Service Provider “Y” 922 on node
920 and Service Provider “Z” 932 on node 930. Workflow
Collator 914 then collates and processes the results from
these two other service-providing nodes in order to fulfill the
original request from client node 940.

Alternatively, a requested service might not require the
services of multiple service-providing nodes; but might
instead require multiple rounds or phases of communication
between the service-providing node and the requesting client
node. As illustrated in FIG. 95, when NEMO-enabled appli-
cation 942 on client node 940 initiates a request to invoke
the service provided by service provider 910, Workflow
Collator 914 in turn engages in multiple phases of commu-
nication 950 with client node 940 in order to fulfill the
original request. For example, Workflow Collator 914 may
generate and send messages to client node 940 (via Access
Point 944), receive and process the responses, and then
generate additional messages (and receive additional
responses) during subsequent phases of communication,
ultimately fulfilling the original request from client node
940.

In this scenario, Workflow Collator 914 is used by service
provider 910 to keep track (perhaps based on a service-
specific session ID or transaction ID as part of the service
request) of which phase of the operation it is in with the
client for correct processing. As noted above, a state
machine or similar mechanism or technique could be
employed to process these multiple phases of communica-
tion 950.

FIG. 9c¢ illustrates one embodiment of a relatively basic
interaction, within service-providing node 960, between
Workflow Collator 914 and Message Pump 965 (within the
node’s Service Adaptation Layer, not shown). As noted
above, Workflow Collator 914 processes one or more service
requests 962 and generates responses 964, employing a
storage and retrieval mechanism 966 to maintain the state of
this orchestration process. In this simple example, Workflow

US 9,466,054 B1

29

Collator 914 is able to process multiple service requests and
responses, which could be implemented with a fairly simple
state machine.

For more complex processing, however, FIG. 94 illus-
trates a node architecture that can both drive or be driven in
performing service orchestration. Such functionality
includes the collection of multiple service requests, aggre-
gation of responses into a composite response, and either
manual or automated orchestration of multiple service
requests and responses in order to create a composite
service.

A variety of scenarios can be supported by the architec-
ture surrounding Workflow Collator 914 in FIG. 9d. For
example, by having a NEMO node combine its functionality
with that of an external coordinator 970 that understands the
semantics of process orchestration (such as a Business
Process Language engine driven by a high level description
of the business processes associated with services) or
resource usage semantics (such as a Resource Description
Framework engine which can be driven by the semantic
meaning of resources in relationship to each other), it is
possible to create more powerful services on top of simpler
ones. Custom External BPL 972 and/or RDF 973 processors
may leverage external message pump 975 to execute process
descriptions via a manual orchestration process 966, i.e., one
involving human intervention.

In addition to relying on a manually driven process that
relies on an external coordinator working in conjunction
with a NEMO node’s message pump, it is also possible to
create an architecture where modules may be integrated
directly with Workflow Collator 914 to support an auto-
mated form of service coordination and orchestration 968.
For example, for regular types of service orchestration
patterns, such as those represented in BPEL, and EBXML
and communicated in the web service bindings associated
with a service interface, Workflow Collator 914 can be
driven directly by a description and collection of request and
response messages 967 that arrive over time. In this sce-
nario, a composite response message is pushed to Message
Pump 965 only when the state machine associated with the
given orchestration processor plug-in (e.g., BPEL 982 or
EBXML 983) has determined that it is appropriate.

Following is an embodiment of a relatively high-level API
description exported by an embodiment of a NEMO Work-
flow Collator:

WorkflowCollator::Create(Environment| |)—WorkflowCol-
lator—this is a singleton interface that returns an initialized
instance of a WFC. The WFC can be initialized based on an
optional set of environmental parameters.
WorkflowCollator::Store(Key[], XML Message)—Bool-
ean—this API allows the caller to store a service message
within the WFC via a set of specified keys.
WorkflowCollator::RetrieveByKey(Key[], XML Mes-
sage)—>XML Message| |—this API allows the caller to
retrieve a set of messages via a set of specified keys. The
returned messages are no longer contained within the WFC.
WorkflowCollator::PeekByKey(Key[], XML Message)—
XML Message| |—this API allows the caller to retrieve a set
of messages via a set of specified keys. The returned
messages are still contained within the WFC.
WorkflowCollator::Clear()—Boolean—this API allows the
caller to clear any messages stored within the WFC.

As an alternative to the relatively rigid BPEL orchestra-
tion standard, another embodiment could permit a more ad
hoc XML-based orchestration description—e.g., for a more
dynamic application, such as a distributed search. Consider
the following description that could be interpreted by a

5

10

20

30

35

40

50

55

60

o

5

30

NEMO Workflow Collator (and could possibly even replace
an entire service given a sufficiently rich language):

<WSDL>
<NEMO Orchestration Descriptor>
<Control Flow> e.g., EXECUTE Service A;
If result = Yes then Service B;
Else Service C
e.g., Device State
e.g., State, Rollback, etc
Note that Trust not necessarily

<Shared State/Context>

<Transactions>

<Trust/Authorization>
transitive

3.6. Exemplary DRM Engine Architecture

In the context of the various embodiments of the NEMO
node architecture described above, FIG. 10 illustrates the
integration of a modular embodiment of a DRM Engine
1000 into a NEMO content consumption device, thereby
facilitating its integration into many different devices and
software environments.

Host application 1002 typically receives a request to
access a particular piece of content through its user interface
1004. Host application 1002 then sends the request, along
with relevant DRM engine objects (preferably opaque to the
host application), to DRM engine 1000. DRM engine 1000
may make requests for additional information and crypto-
graphic services to host services module 1008 through
well-defined interfaces. For example, DRM engine 1000
may ask host services 1008 whether a particular link is
trusted, or may ask that certain objects be decrypted. Some
of the requisite information may be remote, in which case
host services 1008 can request the information from net-
worked services through a service access point 1014.

Once DRM engine 1000 has determined that a particular
operation is permitted, it indicates this and returns any
required cryptographic keys to host services 1008 which,
under the direction of host application 1002, relies on
content services 1016 to obtain the desired content and
manage its use. Host services 1008 might then initiate the
process of media rendering 1010 (e.g., playing the content
through speakers, displaying the content on a screen, etc.),
coordinated with cryptography services 1012 as needed.

The system architecture illustrated in FIG. 10 is a rela-
tively simple example of how the DRM engine can be used
in applications, but it is only one of many possibilities. For
example, in other embodiments, the DRM engine can be
integrated into packaging applications under the governance
of relatively sophisticated policy management systems. Both
client (content consumption) and server (content packaging)
applications of the DRM engine, including descriptions of
the different types of DRM-related objects relied upon by
such applications, will be discussed below, following a
description of one embodiment of the internal architecture of
the DRM engine itself.

DRM Engine 1100, illustrated in FIG. 11, relies on a
virtual machine, control VM 1110, for internal DRM pro-
cessing (e.g., executing control programs that govern access
to content) within a broad range of host platforms, utilizing
host environment 1120 (described above, and in greater
detail below) to interact with the node’s host application
1130 and, ultimately, other nodes within, e.g., the NEMO or
other system.

In one embodiment, control VM 1110 is a virtual machine
used by an embodiment of DRM Engine 1100 to execute
control programs that govern access to content. Following is
a description of the integration of control VM 1110 into the
architecture of DRM engine 1100, as well as some of the

US 9,466,054 B1

31

basic elements of the control VM, including details about its
instruction set, memory model, code modules, and interac-
tion with host environment 1120 via system calls 1106.

In one embodiment, control VM 1110 is a relatively
small-footprint virtual machine that is designed to be easy to
implement using various programming languages. It is
based on a stack-oriented instruction set that is designed to
be minimalist in nature, without much concern for execution
speed or code density. However, it will be appreciated that,
if execution speed and/or code density were issues in a given
application, conventional techniques (e.g., data compres-
sion) could be used to improve performance.

Control VM 1100 is suitable as a target for low or high
level programming languages, and supports languages such
as assembler, C, and FORTH. Compilers for other lan-
guages, such as Java or custom languages, could also be
implemented with relative ease.

Control VM 1110 is designed to be hosted within DRM
Engine 1100, including host environment 1120, as opposed
to being run directly on a processor or in silicon. Control
VM 1110 runs programs by executing instructions stored in
Code Modules 1102. Some of these instructions can make
calls to functions implemented outside of the program itself
by making one or more System Calls 1106, which are either
implemented by Control VM 1110 itself, or delegated to
Host Environment 1120.

Execution Model

Control VM 1110 executes instructions stored in code
modules 1102 as a stream of byte code loaded in memory
1104. Control VM 1110 maintains a virtual register called
the program counter (PC) that is incremented as instructions
are executed. The VM executes each instruction, in
sequence, until the OP_STOP instruction is encountered, an
OP_RET instruction is encountered with an empty call
stack, or an exception occurs. Jumps are specified either as
a relative jump (specified as a byte offset from the current
value of PC), or as an absolute address.

Memory Model

In one embodiment, control VM 1110 has a relatively
simple memory model. VM memory 1104 is separated into
a data segment (DS) and a code segment (CS). The data
segment is a single, flat, contiguous memory space, starting
at address 0. The data segment is typically an array of bytes
allocated within the heap memory of host application 1130
or host environment 1120. For a given VM implementation,
the size of the memory space is preferably fixed to a
maximum; and attempts to access memory outside of that
space will cause faults and terminate program execution.
The data segment is potentially shared between several code
modules 1102 concurrently loaded by the VM. The memory
in the data segment can be accessed by memory-access
instructions, which can be either 32-bit or 8-bit accesses.
32-bit memory accesses are accomplished using the big-
endian byte order. No assumptions are made with regard to
alignment between the VM-visible memory and the host-
managed memory (host CPU virtual or physical memory).

In one embodiment, the code segment is a flat, contiguous
memory space, starting at address 0. The code segment is
typically an array of bytes allocated within the heap memory
of host application 1130 or host environment 1120.

Control VM 1110 may load several code modules, and all
of the code modules may share the same data segment (each
module’s data is preferably loaded at a different address),
but each has its own code segment (e.g., it is preferably not
possible for a jump instruction from one code module 1102
to cause a jump directly to code in another code module
1102).

10

15

20

25

30

35

40

45

50

55

60

65

32

Data Stack

In a preferred embodiment, the VM has a notion of a data
stack, which represents 32-bit data cells stored in the data
segment. The VM maintains a virtual register called the
stack pointer (SP). After reset, SP points to the end of the
data segment, and the stack grows downward (when data is
pushed onto the data stack, the SP registers are decre-
mented). The 32-bit values on the stack are interpreted either
as 32-bit addressed, or 32-bit signed, integers, depending on
the instruction referencing the stack data.

Call Stack

In one embodiment, control VM 1110 manages a call
stack for making nested subroutine calls. The values pushed
onto this stack cannot be read or written directly by the
memory-access instructions, but are used indirectly by the
VM when executing OP_JSR and OP_RET instructions. For
a given VM profile, the size of this return address stack is
preferably fixed to a maximum, which will allow a certain
number of nested calls that cannot be exceeded.

Instruction Set

In one embodiment, control VM 1110 uses a relatively
simple instruction set. Even with a limited number of
instructions; however, it is still possible to express simple
programs. The instruction set is stack-based: except for the
OP_PUSH instruction, none of the instructions have direct
operands. Operands are read from the data stack, and results
are pushed onto the data stack. The VM is a 32-bit VM: all
the instructions in this illustrative embodiment operate on
32-bit stack operands, representing either memory addresses
or signed integers. Signed integers are represented using a 2s
complement binary encoding.

An illustrative instruction set used in one embodiment is
shown below:

OP CODE Name Operands Description
OP_PUSH Push N (direct) Push a constant on the stack
Constant
OP_DROP Drop Remove top of stack
OP_DUP Duplicate Duplicate top of stack
OP_SWAP Swap Swap top two stack elements
OP_ADD Add AB Push the sum of A and B (A + B)
OP_MUL Multiply AB Push the product of A and B
(A*B)
OP_SUB Subtract A, B Push the difference between A
and B (A - B)
OP_DIV Divide A, B Push the division of A by B
(A/B)
OP_MOD Modulo AB Push A modulo B (A % B)
OP_NEG Negate A Push the 2s complement
negation of A (-A)
OP_CMP Compare A Push -1 if A negative, 0 if A is 0,
and 1 is a positive
OP_AND And A, B Push bit-wise AND of A and B
(A& B)
OP_OR Or A, B Push the bit-wise OR of A and B
(A1B)
OP_XOR Exclusive A, B Push the bit-wise eXclusive OR
Or of Aand B (A B)
OP_NOT Logical A Push the logical negation of A (1
Negate if Ais 0, and 0 if A is not 0)
OP_SHL Shift Left AB Push A logically shifted left by B
bits (A << B)
OP_SHR Shift Right A, B Push A logically shifted right by
B bits (A >> B)
OP_.JSR Jump to A Jump to subroutine at absolute
Subroutine address A
OP_JSRR Jump to A Jump to subroutine at PC + A
Subroutine
(Relative)
OP_RET Return from Return from subroutine
Subroutine

US 9,466,054 B1

33
-continued
OP CODE Name Operands Description
OP_BRA Branch A Jump to PC + A
Always
OP_BRP Branch if A, B Jump to PC + FAif B >0
Positive
OP_BRN Branch if A, B Jump to PC + Aif B<0
Negative
OP_BRZ Branch if A, B Jump to PC + Aif Bis 0
Zero
OP_JMP Jump A Jump to A
OP_PEEK Peek A Push the 32-bit value at address
A
OP_POKE Poke A, B Store the 32-bit value B at
address A
OP_PEEKB Peek Byte A Push the 8-bit value at address
A
OP_POKEB Poke Byte A, B Store the least significant bits of
B at address A
OP_PUSHSP Push Stack Push the value of SP
Pointer
OP_POPSP Pop Stack A Set the value of SP to A
Pointer
OP_CALL System Call A Perform System Call with index
A
OP_STOP Stop Terminate Execution

Module Format

In one embodiment, code modules 1102 are stored in an
atom-based format that is essentially equivalent to the atom
structure used in the MPEG-4 file format. An atom consists
of 32 bits, stored as 4-octets in big-endian byte order,
followed by a 4-octet type (usually octets that correspond to
ASCII values of letters of the alphabet), followed by the
payload of the atom (size-8 octets).

3.7. DRM Client-Server Architecture: Content Consump-
tion and Packaging

As noted above, DRM client-side consuming applications
(e.g., media players) consume DRM content (e.g., play a
song, display a movie, etc.). DRM service-side packaging
applications (typically residing on a server) package content
(e.g., associate with the content relevant usage and distri-
bution rights, cryptographic keys, etc.) targeted to DRM
clients.

FIG. 124 illustrates one embodiment of the main archi-
tectural elements of a DRM client. Host application 1200
interfaces with a device user (e.g., the owner of a music
player) through user interface 1210. The user might, for
example, request access to protected content and receive
metadata along with the content (e.g., text displaying the
name of the artist and song title, along with the audio for the
song itself).

Host application 1200, in addition to interacting with user
interface 1210, also performs various functions necessary to
implement the user’s request, which may include managing
interaction with the other DRM client modules to which it
delegates certain functionality. For example, host applica-
tion 1200 may manage interaction with the file system to
extract the requested content. Host application also prefer-
ably recognizes the protected content object format and
issues a request to the DRM engine 1220 to evaluate the
DRM objects that make up the license (e.g., by running the
relevant control program) to determine whether permission
to access the protected content should be granted.

If permission is granted, Host Application 1200 might
also need to verify required signatures and delegate to crypto
services 1230 any other general purpose cryptographic func-
tions required by DRM engine 1220. DRM Engine 1220 is
responsible for evaluating the DRM objects, confirming or

10

15

20

25

30

35

40

45

50

55

60

65

34

denying permission, and providing the keys to host appli-
cation 1200 to decrypt the content.

Host services 1240 provides DRM Engine 1220 with
access to data managed by (as well as certain library
functions implemented by) host application 1200. Host
application 1200 interacts with content services 1250 to
access the protected content, passing to DRM engine 1220
only that portion of the content requiring processing. Con-
tent services 1250 acquires the content from external media
servers and stores and manages the content, relying on the
client’s persistent storage mechanisms.

Once the content is cleared for access, host application
1200 interacts with media rendering engine 1260 (e.g., by
delivering keys) to decrypt and render the content via the
client’s AV output facilities. Some of the information needed
by DRM Engine 1220 may be available in-band with the
content, and can be acquired and managed via content
services 1250, while other information may need to be
obtained through external NEMO DRM services or some
other source.

In a preferred embodiment, all of the cryptographic opera-
tions (encryption, signature verification, etc.) are handled by
crypto services 1230, which interacts indirectly with DRM
engine 1220 via host services 1240, which forwards
requests. Crypto services 1230 can also be used by media
rendering engine 1260 to perform content decryption.

Turning to the service side, FIG. 124 illustrates an
embodiment of the main architectural elements of an exem-
plary DRM service-side packaging node. Host application
1200 interfaces with a content packager (e.g., an owner or
distributor of music content) through user interface 1210.
The packager might, for example, provide content and
licensing information to host application 1200 so that the
content can be protected (e.g., encrypted and associated with
limited access rights) and distributed to various end user and
intermediate content providing nodes.

Host application 1200, in addition to interacting with user
interface 1210, can also perform various functions necessary
to implement the packager’s request, including, for example,
managing interaction with the other DRM packaging mod-
ules to which it delegates certain functionality. For example,
it may manage interaction with general crypto services 1235
to encrypt the content. It may also create a content object
that contains or references the content and contains or
references a license (e.g., after DRM packaging engine 1225
creates the DRM objects that make up the license). Metadata
can be associated with the license that explains what the
license is about in a human-readable way (e.g., for potential
client users to view).

As noted above, host application 1200 interacts with the
user via user interface 1210. It is responsible for getting
information such as a content reference and the action(s) the
packager wants to perform (e.g., who to bind the content to).
It can also display information about the packaging process
such as the text of the license issued and, if a failure occurs,
the reason for this failure. Some information needed by host
application 1200 may require the use of NEMO Services
1270 (e.g., to leverage services such as authentication or
authorization as well as membership).

In one embodiment, host application 1200 delegates to
media format services 1255 responsibility for managing all
media format operations, such as transcoding and packag-
ing. General crypto services 1235 is responsible for issuing
and verifying signatures, as well as encrypting and decrypt-
ing certain data. The request for such operations could be
issued externally or from DRM packaging engine 1225 via
host services 1240.

US 9,466,054 B1

35

In one embodiment, content crypto services 1237 is
logically separated from general crypto services 1235
because it is unaware of host application 1200. It is driven
by media format services 1255 at content packaging time
with a set of keys previously issued by DRM packaging
engine 1225 (all of which is coordinated by host application
1200).

3.8. DRM Content Protection and Governance Objects

In an illustrative scenario, a content provider uses a host
application that relies on a DRM packager engine to create
a set of objects that protect the content and govern its use,
including conveying the information necessary for obtaining
the content encryption keys. The term, license, is used to
encompass this set of objects.

In a preferred embodiment, the content and its license are
logically separate, but are bound together by internal refer-
ences using object IDs. The content and license are usually
stored together, but could be stored separately if necessary
or desirable. A license can apply to more than one item of
content, and more than one license can apply to any single
item of content.

FIG. 13 illustrates an embodiment of such a license,
including the relationships among the set of objects dis-
cussed below. Note that control object 1320 and controller
object 1330 are both signed objects in this embodiment, so
that the DRM client engine can verify that the control
information comes from a trusted source prior to providing
the host application with permission to access the protected
content. In this embodiment, all of these objects, with the
exception of content object 1300, are created by the DRM
client engine.

Content object—Content object 1300 represents the
encrypted content 1304, using a unique ID 1302 to facilitate
the binding between the content and its associated key.
Content object 1300 is an “external” object. The format and
storage of encrypted content 1304 (e.g., MP4 movie file,
MP3 music track, etc.) is determined by the host application
(or delegated to a service), based in part upon the type of
content. The format of the content also provides support for
associating ID 1302 with encrypted content 1304. The
packager’s host application encrypts the content in a format-
dependent manner, and manages content object 1300, using
any available cryptosystem (e.g., using a symmetric cipher,
such as AES).

ContentKey object—ContentKey object 1310 represents
the encrypted key data 1314 (including a unique encryption
key(s), optionally stored internally within the object), and
also has a corresponding unique 1D 1312. Preferably, this
key data, if contained within ContentKey object 1310, is
itself encrypted so that it can only be identified by those
authorized to decrypt the content. ContentKey object 1310
also specifies which cryptosystem was used to encrypt this
key data. This cryptosystem, an embodiment of which is
discussed in greater detail below, is referred to as the “key
distribution system.”

Control object—Control object 1320 includes and pro-
tects the control program (e.g., control byte code 1324) that
represents the rules that govern the use of the keys used to
encrypt and decrypt the content. It also includes 1D 1322 so
that it can be bound to the corresponding ContentKey object.
As noted above, control object 1320 is signed so that the
DRM client engine can verity the validity of the binding
between the ContentKey 1310 and control 1320, as well as
the binding between the ContentKey ID 1312 and the
encrypted key data 1314. The validity of control byte code

10

15

20

25

30

35

40

45

50

55

60

65

36

1324 can optionally be derived by verifying a secure hash
(e.g., control hash 1338, if available) contained in controller
object 1330.

Controller object—Controller object 1330 represents the
binding between the keys and the rules governing their
control, using IDs 1312 and 1322, respectively, to bind the
ContentKey 1310 and control 1320 objects. Controller
object 1330 governs the use of protected content by con-
trolling application of the rules to that content—i.e., by
determining which control governs the use of which Con-
tentKey object 1310. Controller object 1330 also contains a
hash 1336 value for each of the ContentKey objects 1310
that it references, in order to prevent tampering with the
binding between each ContentKey object 1310 and its
corresponding encrypted key data 1314. As noted above,
controller objects 1330 are preferably signed (e.g., by a
packager application that has a certificate allowing it to sign
controller objects, using public key or symmetric key sig-
natures, as discussed below) to enable verification of the
validity of the binding between the ContentKey 1310 and
control 1320 objects, as well as the binding between the
ContentKey ID 1312 and the encrypted key data 1314. As
also noted above, controller object 1330 also optionally
contains control hash 1338, which allows the validity of
control object 1320 to be derived without having to sepa-
rately verify its signature.

Symmetric Key Signature—In a preferred embodiment, a
symmetric key signature is the most common type of
signature for controller objects 1330. In one embodiment,
this type of signature is implemented by computing a MAC
(Message Authentication Code) of the controller object
1330, keyed with the same key as the key represented by the
ContentKey object 1310.

Public Key Signature—In a preferred embodiment, this
type of signature is used when the identity of the signer of
the controller object 1330 needs to be asserted uniquely.
This type of signature is implemented with a public key
signature algorithm, signing with the private key of the
principal who is asserting the validity of this object. When
using this type of signature, the ContentKey binding infor-
mation carried in the controller object 1330 preferably
contains a hash 1336 of the key contained in the ContentKey
object 1310, concatenated with a fingerprint of the signing
private key (typically a hash of the private key). This binding
ensures that the signer of the object has knowledge of the
key used to protect the content.

Protector object—Protector object 1340 provides pro-
tected access to content by controlling the use of keys used
to encrypt and decrypt that content. Protector object 1340
binds content object 1300 to ContentKey object 1310 in
order to associate protected content with its corresponding
key(s). To accomplish this binding, it includes references
1342 and 1344, respectively, to the IDs 1302 and 1312 of
content 1300 and ContentKey 1310. In one embodiment,
protector object 1340 contains information not only as to
which key was used to encrypt one or more content items,
but also as to which encryption algorithm was employed. In
one embodiment, if content reference 1342 references more
than one content object 1300, ContentKey reference 1344
may still reference only one ContentKey object 1310, indi-
cating that all of those content items were encrypted using
the same encryption algorithm and the same key.

3.9. DRM Node and Link Objects

While FIG. 13 illustrates the content protection and
governance objects created by DRM engines to control
access to protected content, FIG. 14 illustrates the DRM

US 9,466,054 B1

37

objects that represent entities in the system (e.g., users,
devices or groups), as well as the relationships among those
entities.

While FIG. 4, discussed above, illustrates a conceptual
embodiment of a node or authorization graph depicting these
entities and their relationships, FIG. 14 illustrates two types
of objects that implement an embodiment of this conceptual
graph: vertex (or “node”) objects (1400a and 14005), which
represent entities and their attributes, and link objects
(1420), which represent the relationships among node
objects. In one embodiment, the DRM engine, by executing
control programs, instigates one or more usage patterns
involving these objects—e.g., encrypting a song and asso-
ciating it with a license that restricts its distribution to
particular individuals. Yet, the DRM engine in this embodi-
ment does not specify, implicitly or explicitly, the semantics
attached to these objects (e.g., to which individuals the song
may be distributed).

In one embodiment this semantic context, referred to as a
DRM profile, is defined within the attributes of the node
objects themselves. A DRM profile may include descriptions
of these entities and the various roles and identities they
represent, typically expressed using node attributes (1401a
and 14015). As discussed above, a link 1420 between two
nodes 1400a and 14005 could represent various types of
semantic relationships. For example, if one node was a
“user” and the other was a “device,” then link 1420 might
represent “ownership.” If the other node was a “user group”
instead of a “device,” then link 1420 might represent “mem-
bership.” Link 1420 might be unidirectional in one scenario
and bidirectional in another (e.g., representing two links
between the same two nodes).

Node objects 1400a and 14005 also typically have object
confidentiality protection asymmetric key pairs (e.g., private
key 1405a and public key 14064 of node 14004, and private
key 14055 and public key 14065 of node 14005) to limit
confidential information to authorized portions of the node.
Confidential information targeted at a node will be
encrypted with that node’s confidentiality protection public
key. Optionally, a content protection asymmetric key pair
(e.g., private key 1403a and public key 14035 of node
14004, and private key 14035 and public key 14035 of node
14005) can be used in conjunction with link objects when
the system uses a ContentKey derivation system for Con-
tentKey distribution, as discussed in greater detail below.
Content items themselves may be protected with content
protection symmetric keys, such as symmetric key 1402a of
node 1400a and key 14025 of node 14005.

As noted above, in one embodiment link objects (e.g., link
1420) represent relationships between nodes. The semantics
of these relationships can be stored in node attributes (e.g.,
14014 of node 1400a and 14015 of node 14005), referenced
from within the link objects (e.g., node reference 1422 to
node 1400a and node reference 1424 to node 14005). Link
objects can also optionally contain cryptographic data (e.g.,
key derivation info 1426) that enables the link object to be
used for ContentKey derivations, as discussed below.

In one embodiment the link object itself'is a signed object,
represented by a directed edge in a graph, such as in FIG. 4
above. When there exists such a directed edge from one node
(e.g., node X) to another (e.g., node Y), this “path” from
node X to node Y indicates that node Y is “reachable” from
node X. The existence of a path can be used by other DRM
objects, e.g., as a condition of performing a particular
function. A control object might check to determine whether
a target node is reachable before it allows a certain action to
be performed on its associated content object.

10

15

20

25

30

35

40

45

50

55

60

65

38

For example, if node D represents a device that wants to
perform the “play” action on a content object, a control that
governs this content object might test whether a certain node
U representing a certain user is reachable from node D (e.g.,
whether that user is the “owner” of that device), and only
allow the “play” action to be performed if that condition is
satisfied. To determine if node U is reachable, the DRM
engine can run a control program to determine whether there
exists a set of link objects that can establish a path (e.g., a
direct or indirect relationship) between node D and node U.
As noted above, in one embodiment the DRM engine is
unaware of the semantics of the relationship; it simply
determines the existence of a path, enabling the host appli-
cation, for example, to interpret this path as a conditional
authorization, permitting access to protected content.

In one embodiment the DRM engine verifies link objects
before allowing them to be used to determine the existence
of paths in the system node graph. The validity of a link
object at any given time may depend upon the particular
features of the certificate system (discussed below) used to
sign link objects. For example, they may have limited
“lifetimes” or be revoked or revalidated from time to time
based on various conditions.

Also, in one embodiment the policies that govern which
entities can sign link objects, which link objects can be
created, and the lifetime of link objects are not directly
handled by the DRM engine. Instead, they may leverage the
node attributes information. To facilitate the task of enforc-
ing certain policies, the system may provide a way to extend
standard certificate formats with additional constraint check-
ing. These extensions make it possible to express validity
constraints on certificates for keys that sign links, such that
constraints (e.g., the type of nodes connected by the link, as
well as other attributes), can be checked before a link is
considered valid.

Finally, in one embodiment the link object may contain
cryptographic data that provides the user with the nodes’
content protection keys for key distribution. That crypto-
graphic data may, for example, contain, in addition to
metadata, the private and/or symmetric content protection
keys of the “from” node, encrypted with the content pro-
tection public key and/or the content protection symmetric
key of the “t0” node. For example, an entity that has been
granted the ability to create link objects that link device
nodes and user nodes under a certain policy may check to
ensure that it only creates links between node objects that
have attributes indicating they are indeed representing a
device, and nodes that have attributes indicating that they
represent a user.

3.10. DRM Cryptographic Keys

An example embodiment of a DRM key distribution
system is illustrated in FIG. 15. The basic principle behind
the key distribution system shown in FIG. 15 is to use link
objects to distribute keys in addition to their primary pur-
pose of establishing relationships between node objects.

As noted above, a control object may contain a control
program that determines whether a requested operation
should be permitted. That control program may check to
determine whether a specific node is reachable via a collec-
tion of link objects. The key distribution system shown in
FIG. 15 leverages that search through a collection of link
objects to facilitate the distribution of a key such that it is
available to the DRM engine that is executing the control
program.

In one embodiment, each node object that uses the key
distribution system has one or more keys. These keys are
used to encrypt content keys and other nodes’ key distribu-

US 9,466,054 B1

39

tion keys. Link objects created for use in the same deploy-
ment contain some cryptographic data payload that allows
key information do be derived when chains of links are
processed by the DRM engine.

With nodes and links carrying keys this way, given a
collection of links (e.g., from a node Ato anode B . .. to
a node 7), any entity that has access to the private keys of
node A also has access to the private keys of node Z. Having
access to node Z’s private keys gives the entity access to any
content key encrypted with those keys.

Node objects that participate in a key distribution system
contain keys as part of their data. As illustrated in FIG. 15,
in one embodiment each node (15004a, 15005, and 1500¢)
has three keys:

Public Key Kpub[N]—This is the public part of a pair of
public/private keys for the public key cipher. In one embodi-
ment this key (1505a, 15055 and 1505¢, respectively, in
nodes 1500a, 15005 and 1500¢) comes with a certificate
(discussed below) so that its credentials can be verified by
entities that want to bind confidential information to it
cryptographically.

Private Key Kpriv[N]—This is the private part of the
public/private key pair. The entity that manages the node is
responsible for ensuring that this private key (keys 1515a,
151556 and 1515¢, respectively, in nodes 1500q, 15005 and
1500c¢) is kept secret. For that reason, in one embodiment
this private key is stored and transported separately from the
rest of the node information.

Symmetric Key Ks[N]—This key is used with a symmetric
cipher (discussed below). Because this private key (keys
15254, 152556 and 1525¢, respectively, in nodes 1500aq,
15005 and 1500¢) is confidential, the entity that manages the
node is responsible for keeping it secret.

The key distribution system illustrated in FIG. 15 can be
implemented using different cryptographic algorithms,
though the participating entities will generally need to agree
on a set of supported algorithms. In one embodiment, at least
one public key cipher (such as RSA) and one symmetric key
cipher (such as AES) are supported.

The following notation refers to cryptographic functions:
Ep(Kpub[N], M) means “the message M encrypted with the
public key Kpub of node N, using a public key cipher”
Dp(Kpriv[N], M) means “the message M decrypted with the
private key Kpriv of node N using a public key cipher”
Es(Ks[N], M) means “the message M encrypted with the
symmetric key Ks of node N using a symmetric key cipher”
Ds(Ks[N], M) means “the message M decrypted with the
symmetric key Ks of node N using a symmetric key cipher”

Targeting a “ContentKey” to a node means making that
key available to the entities that have access to the private
keys of that node. In one embodiment binding is done by
encrypting the key using one or both of the following
methods: Public Binding: Create a ContentKey object that
contains Ep(Kpub[N], CK) Symmetric Binding: Create a
ContentKey object that contains Es(Ks[N], CK)

In this embodiment, symmetric binding is preferably used
whenever possible, as it uses a less computationally inten-
sive algorithm that is less onerous on the receiving entity.
However, the entity (e.g., a content packager) that creates
the ContentKey object may not always have access to
Ks[N]. In that case, public binding can be used, as Kpub[N]
should be available, as it is not confidential information.
Kpub[N] will usually be made available to entities that need
to target ContentKeys, accompanied by a certificate that can
be inspected by the entity to decide whether Kpub[N] is
indeed the key of a node that can be trusted to handle the
ContentKey in accordance with some agreed-upon policy.

10

20

30

40

45

55

40

To allow entities to have access to the distribution keys of
all reachable nodes, in one embodiment link objects contain
a “payload.” That payload allows any entity that has access
to the private keys of the link’s “from node” to also have
access to the private keys of the link’s “to node.” In this
manner, an entity can decrypt any ContentKey targeted to a
node that is reachable from its node.

Thus, returning to FIG. 15, link 1530a, which links node
15004 to node 15005, contains a payload that is created by
encrypting the private keys 15156 and 15255 of node 15005
with either the symmetric key 1515a of node 1500q or, if
unavailable (e.g., due to its confidentiality), with the public
key 15254 of node 1500a. Similarly, link 15305, which links
node 15005 to node 1500¢, contains a payload that is created
by encrypting the private keys 1515¢ and 1525¢ of node
1500¢ with either the symmetric key 15155 of node 15006
or, if unavailable, with the public key 152556 of node 15005.

When a DRM engine processes link objects, it processes
the payload of each link to update an internal chain 1550 of
keys to which it has access. In one embodiment the payload
of a link from node A to node B consists of either:

Public Derivation Information

Ep(Kpub[A]. {Ks[B].Kpriv[B]})

or

Symmetric Derivation Information

Bs(Ks[A], {Ks[B],Kpriv[B]})

Where {Ks[B],Kpriv[B} is a data structure containing Ks[B]
and Kpriv[B].

The public derivation information is used to convey the
private keys of node B, Ks[B] and Kpriv[B], to any entity
that has access to the private key of node A, Kpriv[A]. The
symmetric derivation information is used to convey the
private keys of node B, Ks[B] and Kpriv[B], to any entity
that has access to the symmetric key of node A, Kpriv[A].

Thus, with reference to key chain 1550, an entity that has
access to the private keys of node 1500a (private key 15154
and symmetric key 1525q) enables the DRM engine to
utilize these private keys 1560 as a “first link” in (and
starting point in generating the rest of) key chain 1550.
Scuba keys 1560 are used to decrypt 1555a the ContentKey
object within link 1530a (using private key 15154 for public
derivation if public binding via public key 15054 was used,
or symmetric key 1525a for symmetric derivation if sym-
metric binding via symmetric key 1525a was used), result-
ing in the next link 1570 in key chain 1550—i.e., the
confidential keys of node 15006 (private key 15156 and
symmetric key 15256). The DRM engine uses these keys
1570 in turn to decrypt 155556 the ContentKey object within
link 15306 (using private key 15155 for public derivation if
public binding via public key 15055 was used, or symmetric
key 15256 for symmetric derivation if symmetric binding
via symmetric key 15255 was used), resulting in the final
link 1580 in key chain 1550—i.e., the confidential keys of
node 1500¢ (private key 1515¢ and symmetric key 1525¢).

Since, in one embodiment, the DRM engine can process
links in any order, it may not be able to perform a key
derivation at the time a link is processed (e.g., because the
keys of the “from” node of that link have not yet been
derived). In that case, the link is remembered, and processed
again when such information becomes available (e.g., when
a link is processed in which that node is the “to” node).

3.11. DRM Certificates

As noted above, in one embodiment certificates are used
to check the credentials associated with cryptographic keys
before making decisions based on the digital signature
created with those keys. In one embodiment, multiple cer-
tificate technologies can be supported, leveraging existing

US 9,466,054 B1

41

information typically available as standard elements of
certificates, such as validity periods, names, etc. In addition
to these standard elements, additional constraints can be
encoded to limit potential usage of a certified key.

In one embodiment this is accomplished by using key-
usage extensions as part of the certificate-encoding process.
The information encoded in such extensions can be used to
enable the DRM engine to determine whether the key that
has signed a specific object was authorized to be used for
that purpose. For example, a certain key may have a cer-
tificate that allows it to sign only those link objects in which
the link is from a node with a specific attribute, and/or to a
node with another specific attribute.

The base technology used to express the certificate typi-
cally is not capable of expressing such a constraint, as its
semantics may be unaware of elements such as links and
nodes. In one embodiment such specific constraints are
therefore conveyed as key usage extensions of the basic
certificate, including a “usage category” and a correspond-
ing “constraint program.”

The usage category specifies which type of objects a key
is authorized to sign. The constraint program can express
dynamic conditions based on context. In one embodiment a
verifier that is being asked to verify the validity of such a
certificate is required to understand the relevant semantics,
though the evaluation of the key usage extension expression
is delegated to the DRM engine. The certificate is considered
valid only if the execution of that program generates a
successful result.

In one embodiment, the role of a constraint program is to
return a boolean value—e.g., “true” indicating that the
constraint conditions are met, and “false” indicating that
they are not met. The control program may also have access
to some context information that can be used to reach a
decision. The available context information may depend
upon the type of decision being made by the DRM engine
when it requests the verification of the certificate. For
example, before using the information in a link object, a
DRM engine may verify that the certificate of the key that
signed the object allows that key to be used for that purpose.
When executing the constraint program, the environment of
the DRM engine is populated with information regarding the
link’s attributes, as well as the attributes of the nodes
referenced by that link.

The constraint program embedded in the key usage exten-
sion is encoded, in one embodiment, as a code module
(described above). This code module preferably exports at
least one entry point named, for example,
“EngineName.Certificate.<Category>.Check”, where Cat-
egory is a name indicating which category of certificates
need to be checked. Parameters to the verification program
will be pushed onto the stack before calling the entry point.
The number and types of parameters passed onto the stack
depends on the category of certificate extension being evalu-
ated.

4. System Operation

4.1. Basic Node Interaction

Having examined various embodiments of the principal
architectural elements of the NEMO system, including
embodiments in the context of DRM applications, we now
turn to the NEMO system in operation—i.e., the sequence of
events within and among NEMO nodes that establish the
foundation upon which application-specific functionality
can be layered.

In one embodiment, before NEMO nodes invoke appli-
cation-specific functionality, they go through a process of
initialization and authorization. Nodes initially seek to dis-

10

15

20

25

30

35

40

45

50

55

60

65

42

cover desired services (via requests, registration, notifica-
tion, etc.), and then obtain authorization to use those services
(e.g., by establishing that they are trustworthy and that they
satisfy any relevant service provider policies).

This process is illustrated in FIG. 16, which outlines a
basic interaction between a Service Provider 1600 (in this
embodiment, with functionality shared between a Service
Providing Node 1610 and an Authorizing Node 1620) and a
Service Requester 1630 (e.g., a client consumer of services).
Note that this interaction need not be direct. Any number of
Intermediary Nodes 1625 may lie in the path between the
Service Requester 1630 and the Service Provider 1600. The
basic steps in this process, which will be described in greater
detail below, are discussed from the perspectives of both the
client Service Requester 1630 and Service Provider 1600.

From the perspective of the Service Requester 1630, the
logical flow of events shown in FIG. 16 is as follows:
Service Discovery—In one embodiment, Service Requester
1630 initiates a service discovery request to locate any
NEMO-enabled nodes that provide the desired service, and
obtain information regarding which service bindings are
supported for accessing the relevant service interfaces. Ser-
vice Requester 1630 may choose to cache information about
discovered services. It should be noted that the interface/
mechanism for Service Discovery between NEMO Nodes is
just another service a NEMO Node chooses to implement
and expose. The Service Discovery process is described in
greater detail below, including other forms of communica-
tion, such as notification by Service Providers to registered
Service Requesters.

Service Binding Selection—Once candidate service-provid-
ing Nodes are found, the requesting Node can choose to
target (dispatch a request to) one or more of the service-
providing Nodes based on a specific service binding.
Negotiation of Acceptable Trusted Relationship with Ser-
vice Provider—In one embodiment, before two Nodes can
communicate in a secure fashion, they must be able to
establish a trusted relationship for this purpose. This may
include an exchange of compatible trust credentials (e.g.
X.500 certificates, tokens, etc.) in some integrity-protected
envelope that may be used to determine identity; and/or it
may include establishing a secure channel, such as an SSL
channel, based on certificates both parties trust. In some
cases, the exchange and negotiation of these credentials may
be an implicit property of the service interface binding (e.g.
WS-Security if the WS-I XML Protocol is used when the
interface is exposed as a web service, or an SSL request
between two well-known nodes). In other cases, the
exchange and negotiation of trust credentials may be an
explicitly separate step. NEMO provides a standard and
flexible framework allowing Nodes to establish trusted
channels for communication. It is up to a given Node, based
on the characteristics of the Node and on the characteristics
of the service involved in the interaction, to determine which
credentials are sufficient for interacting with another NEMO
Node, and to make the decision whether it trusts a given
Node. In one embodiment the NEMO framework leverages
existing and emerging standards, especially in the area of
security-related data types and protocols. For example, in
one embodiment the framework will support using SAML. to
describe both credentials (evidence) given by service
requestors to service providers when they want to invoke a
service, as well as using SAML as a way of expressing
authorization queries and authorization responses.
Creation of Request Message—The next step is for Request-
ing Node 1630 to create the appropriate request message(s)
corresponding to the desired service. This operation may be

US 9,466,054 B1

43

hidden by the Service Access Point. As noted above, the
Service Access Point provides an abstraction and interface
for interacting with service providers in the NEMO frame-
work, and may hide certain service invocation issues, such
as native interfaces to service message mappings, object
serialization/de-serialization, negotiation of compatible
message formats, transport mechanisms or message routing
issues, etc.

Dispatching of Request—Once the request message is
created, it is dispatched to the targeted service-providing
Node(s)—e.g., Node 1610. The communication style of the
request can be synchronous/asynchronous RPC style or
message-oriented, based on the service binding and/or pref-
erences of the requesting client. Interacting with a service
can be done directly by the transmission and processing of
service messages or done through more native interfaces
through the NEMO Service Access Point.

Receiving Response Message(s)—After dispatching the
request, Requesting Node 1610 receives one or more
responses in reply. Depending on the specifics of the service
interface binding and the preferences of Requesting Node
1610, the reply(s) can be returned in various ways, including
an RPC-style response or notification message. As noted
above, requests and replies can be routed to their targeted
Node via other Intermediary Node(s) 1625, which may
themselves provide a number of services, including: routing,
trust negotiation, collation and correlation functions, etc. All
services in this embodiment are “standard” NEMO services
described, discovered, authorized, bound to, and interacted
with within the same consistent framework. The Service
Access Point may hide message-level abstractions from the
Node. For example from the Node’s perspective, invocation
of a service may seem like a standard function invocation
with a set of simple fixed parameters.

Validation of Response re Negotiated Trust Semantics—In
one embodiment, Requesting Node 1630 validates the
response message to ensure that it adheres to the negotiated
trust semantics between it and the Service Providing Node
1610. This logic typically is completely encapsulated within
the Service Access Point.

Processing of Message Payload—Finally, any appropriate
processing is then applied based on the (application specific)
message payload type and contents.

Following are the (somewhat similar) logical flow of
events from the perspective of the Service Provider 1600:
Service Support Determination—A determination is first
made as to whether the requested service is supported. In
one embodiment, the NEMO framework doesn’t mandate
the style or granularity of how a service interface maps as an
entry point to a service. In the simplest case, a service
interface maps unambiguously to a given service, and the act
of binding to and invoking that interface constitutes support
for the service. However, it may be the case that a single
service interface handles multiple types of requests, or that
a given service type contains additional attributes which
need to be sampled before a determination can be made as
to whether the Node really supports the specifically desired
functionality.

Negotiation of Acceptable Trusted Relationship with Ser-
vice Requester—In some cases, it may be necessary for
Service Provider 1600 to determine whether it trusts
Requesting Node 1630, and establish a trusted communica-
tion channel. This process is explained in detail above.

Dispatch Authorization Request to Nodes Authorizing
Access to Service Interface—Service Providing Node 1610
then determines whether Requesting Node 1630 is autho-
rized or entitled to have access to the service, and, if so,

25

35

40

45

50

44

under what conditions. This may be a decision based on
local information, or on a natively supported authorization
decision mechanism. If not supported locally, Service Pro-
viding Node 1610 may dispatch an authorization request(s)
to a known NEMO authorization service provider (e.g.,
Authorizing Node 1620) that governs its services, in order to
determine if the Requesting Node 1610 is authorized to have
access to the requested services. In many situations, Autho-
rizing Node 1620 and Service Providing Node 1610 will be
the same entity, in which case the dispatching and process-
ing of the authorizing request will be local operations
invoked through a lightweight service interface binding such
as a C function entry point. Once again, however, since this
mechanism is itself just a NEMO service, it is possible to
have a fully distributed implementation. Authorization
requests can reference identification information and/or
attributes associated with the NEMO Node itself, or infor-
mation associated with users and/or devices associated with
the Node.
Message Processing Upon Receipt of Authorization
Response—Upon receiving the authorization response, if
Requesting Node 1630 is authorized, Service Provider 1600
performs the necessary processing to fulfill the request.
Otherwise, if Requesting Node 1630 is not authorized, an
appropriate “authorization denied” response message can be
generated.
Return Response Message—The response is then returned
based on the service interface binding and the preferences of
Requesting Node 1630, using one of several communication
methods, including an RPC-style response or notification
message. Once again, as noted above, requests and replies
can be routed to their targeted Node via other Intermediary
Node(s) 1625, which may themselves provide a number of
services, including routing, trust negotiation, collation and
correlation functions, etc. An example of a necessary service
provided by an Intermediary Node 1625 might be delivery
to a notification processing Node that can deliver the mes-
sage in a manner known to Requesting Node 1630. An
example of a “value added” service might be, for example,
a coupon service which associates coupons to the response
if it knows of the interests of Requesting Node 1630.

4.2. Notification

As noted above, in addition to both asynchronous and
synchronous RPC-like communication patterns, where the
client specifically initiates a request and then either waits for
responses or periodically checks for responses through
redemption of a ticket, some NEMO embodiments also
support a pure messaging type of communication pattern
based on the notion of notification. The following elements
constitute data and message types supporting this concept of
notification in one embodiment:
Notification—a message containing a specified type of pay-
load targeted at interested endpoint Nodes.
Notification Interest—criteria used to determine whether a
given Node will accept a given notification. Notification
interests may include interests based on specific types of
identity (e.g., Node ID, user ID, etc.), events (e.g., Node
discovery, service discovery, etc.), affinity groups (e.g., new
jazz club content), or general categories (e.g., advertise-
ments).
Notification Payload—the typed contents of a notification.
Payload types may range from simple text messages to more
complex objects.
Notification Handler Service Interface—the type of service
provider interface on which notifications may be received.
The service provider also describes the notification interests
associated with the interface, as well as the acceptable

US 9,466,054 B1

45

payload types. A Node supporting this interface may be the
final destination for the notification or an intermediary
processing endpoint.

Notification Processor Service—a service that is capable of
matching notifications to interested Nodes, delivering the
notifications based on some policy.

Notification Originator—a Node that sends out a notification
targeted to a set of interested Nodes and/or an intermediary
set of notification processing Nodes.

The notification, notification interest, and notification
payload are preferably extensible. Additionally, the notifi-
cation handler service interface is preferably subject to the
same authorization process as any other NEMO service
interface. Thus, even though a given notification may match
in terms of interest and acceptable payload, a Node may
refuse to accept a notification based on some associated
interface policy related to the intermediary sender or origi-
nating source of the notification.

FIG. 17a depicts a set of notification processing Nodes
1710 discovering 1715 a Node 1720 that supports the
notification handler service. As part of its service descrip-
tion, node 1720 designates its notification interests, as well
as which notification payload types are acceptable.

FIG. 1754 depicts how notifications can be delivered. Any
Node could be the originating source as well as processor of
the notification, and could be responsible for delivering the
notification to Node 1720, which supports the notification
handler service. Thus, Node 1710a could be the originating
notification processing Node; or such functionality might be
split between Node 1710c¢ (originating source of notifica-
tion) and Node 17105 (processor of notification). Still
another Node (not shown) might be responsible for delivery
of the notification. Notification processors that choose to
handle notifications from foreign notification-originating
Nodes may integrate with a commercial notification-pro-
cessing engine such as Microsoft Notification Services in
order to improve efficiency.

4.3. Service Discovery

In order to use NEMO services, NEMO Nodes will need
to first know about them. One embodiment of NEMO
supports three dynamic discovery mechanisms, illustrated in
FIGS. 18a-c:

Client Driven—a NEMO Node 1810« (in FIG. 184) explic-
itly sends out a request to some set of targeted Nodes (e.g.,
18204) that support a “Service Query” service interface
18154, the request asking whether the targeted Nodes sup-
port a specified set of services. If requesting Node 1810« is
authorized, Service Providing Node 1820a will send a
response indicating whether it supports the requested inter-
faces and the associated service interface bindings. This is
one of the more common interfaces that Nodes will support
if they expose any services.

Node Registration—a NEMO Node 18105 (in FI1G. 1856) can
register its description, including its supported services, with
other Nodes, such as Service Providing Node 182054. If a
Node supports this interface 18155, it is willing to accept
requests from other Nodes and then cache those descriptions
based on some policy. These Node descriptions are then
available directly for use by the receiving Node or by other
Nodes that perform service queries targeted to Nodes that
have cached descriptions. As an alternative to P2P registra-
tion, a Node could also utilize a public registry, such as a
UDDI (Universal Discovery, Description and Integration)
standard registry for locating services.
Event-Based—Nodes (such as Node 1810c¢ in FIG. 18¢)
send out notifications 1815c¢ to Interested Nodes 1820¢ (that
are “notification aware” and previously indicated their inter-

40

45

46

est), indicating a change in state (e.g., Node active/avail-
able), or a Node advertises that it supports some specific
service. The notification 1815¢ can contain a full description
of the node and its services, or just the ID of the node
associated with the event. Interested nodes may then choose
to accept and process the notification.

4.4. Service Authorization and the Establishment of Trust

As noted above, in one embodiment, before a NEMO
Node allows access to a requested service, it first determines
whether, and under which conditions, the requesting Node is
permitted access to that service. Access permission is based
on a trust context for interactions between service requestor
and service provider. As will be discussed below, even if a
Node establishes that it can be trusted, a service providing
Node may also require that it satisfy a specified policy
before permitting access to a particular service or set of
services.

In one embodiment NEMO does not mandate the specific
requirements, criteria, or decision-making logic employed
by an arbitrary set of Nodes in determining whether to trust
each other. Trust semantics may vary radically from Node to
Node. Instead, NEMO provides a standard set of facilities
that allow Nodes to negotiate a mutually acceptable trusted
relationship. In the determination and establishment of trust
between Nodes, NEMO supports the exchange of creden-
tials (and/or related information) between Nodes, which can
be used for establishing a trusted context. Such trust-related
credentials may be exchanged using a variety of different
models, including the following:

Service-Binding Properties—a model where trust creden-
tials are exchanged implicitly as part of the service interface
binding. For example, if a Node 1920a (in FIG. 19q)
exposes a service in the form of an HTTP Post over SSL, or
as a Web Service that requires a WS-Security XML Signa-
ture, then the actual properties of this service binding may
communicate all necessary trust-related credentials 19154
with a Requesting Node 1910a.

Request/Response Attributes—a model where trust creden-
tials are exchanged through WSDL request and response
messages (see FIG. 195) between a Requesting Node 19105
and a Service Providing Node 19205, optionally including
the credentials as attributes of the messages 19154. For
example, digital certificates could be attached to, and flow
along with, request and response messages, and could be
used for forming a trusted relationship.

Explicit Exchange—a model where trust credentials are
exchanged explicitly through a service-provider interface
(1915¢ in FIG. 19¢) that allows querying of information
related to the trust credentials that a given node contains.
This is generally the most involved model, typically requir-
ing a separate roundtrip session in order to exchange cre-
dentials between a Requesting Node 1910¢ and a Service
Providing Node 1920c¢. The service interface binding itself
provides a mutually acceptable trusted channel for explicit
exchange of credentials.

In addition to these basic models, NEMO can also support
combinations of these different approaches. For example,
the communication channel associated with a semi-trusted
service binding may be used to bootstrap the exchange of
other security-related credentials more directly, or exchang-
ing security-related credentials (which may have some type
of inherent integrity) directly and using them to establish a
secure communication channel associated with some service
interface binding.

As noted above, trust model semantics and the processes
of establishing trust may vary from entity to entity. In some
situations, mutual trust between nodes may not be required.

US 9,466,054 B1

47

This type of dynamic heterogeneous environment calls for a
flexible model that provides a common set of facilities that
allow different entities to negotiate context-sensitive trust
semantics.

4.5. Policy-Managed Access

In one embodiment (as noted above), a service providing
Node, in addition to requiring the establishment of a trusted
context before it allows a requesting Node to access a
resource, may also require that the requesting Node satisfy
a policy associated with that resource. The policy decision
mechanism used for this purpose may be local and/or
private. In one embodiment, NEMO provides a consistent,
flexible mechanism for supporting this functionality.

As part of the service description, one can designate
specific NEMO Nodes as “authorization” service providers.
In one embodiment an authorization service providing Node
implements a standard service for handling and responding
to authorization query requests. Before access is allowed to
a service interface, the targeted service provider dispatches
an “Authorization” query request to any authorizing Nodes
for its service, and access will be allowed only if one or more
such Nodes (or a pre-specified combination thereof) respond
indicating that access is permitted.

As illustrated in FIG. 20, a Requesting Node 2010
exchanges messages 2015 with a Service Providing Node
2020, including an initial request for a particular service.
Service Providing Node 2020 then determines whether
Requesting Node 2010 is authorized to invoke that service,
and thus exchanges authorization messages 2025 with the
authorizing Nodes 2025 that manage access to the requested
service, including an initial authorization request to these
Nodes 2030. Based on the responses it receives, Service
Providing Node 2020 then either processes and returns the
applicable service response, or returns a response indicating
that access was denied.

Thus, the Authorization service allows a NEMO Node to
participate in the role of policy decision point (PDP). In a
preferred embodiment, NEMO is policy management sys-
tem neutral; it does not mandate how an authorizing Node
reaches decisions about authorizations based on an autho-
rization query. Yet, for interoperability, it is preferable that
authorization requests and responses adhere to some stan-
dard, and be sufficiently extensible to carry a flexible pay-
load so that they can accommodate different types of autho-
rization query requests in the context of different policy
management systems. In one embodiment, support is pro-
vided for at least two authorization formats: (1) a simple
format providing a very simple envelope using some least
common denominator criteria, such as input, a simple
requestor 1D, resource ID, and/or action ID, and (2) the
standard “Security Assertion Markup Language” (SAML)
format to envelope an authorization query.

In one embodiment, an authorizing Node must recognize
and support at least a predefined “simple” format and be able
to map it to whatever native policy expression format exists
on the authorizing Node. For other formats, the authorizing
Node returns an appropriate error response if it does not
handle or understand the payload of an “Authorization”
query request. Extensions may include the ability for Nodes
to negotiate over acceptable formats of an authorization
query, and for Nodes to query to determine which formats
are supported by a given authorizing service provider Node.

4.6. Basic DRM Node Interaction

Returning to the specific NEMO instance of a DRM
application, FIG. 21 is a DRM Node (or Vertex) Graph that
can serve to illustrate the interaction among DRM Nodes, as
well as their relationships. Consider the following scenario

10

15

20

25

30

35

40

45

50

55

60

65

48

in which portable device 2110 is a content playback device
(e.g., an iPodl). Nip1 is the Node that represents this device.
Kip1 is the content encryption key associated with Nipl.
“User” is the owner of the portable device, and Ng is the
Node that represents the user. Kg is the content encryption
key associated with Ng.

PubL.ib is a Public Library. Npl represents the members of
this library, and Kpl is the content encryption key associated
with Npl. ACME represents all the ACME-manufactured
Music Players. Namp represents that class of devices, and
Kamp is the content encryption key associated with this
group.

L1 is a link from Nipl to Ng, which means that the
portable device belongs to the user (and has access to the
user’s keys). L2 is a link from Ng to Npl, which means that
the user is a member of the Public Library (and has access
to its keys). L3 is a link from Nip1 to Namp, which means
that the portable device is an ACME device (mere member-
ship, as the company has no keys). .4 is a link from Npl to
Napl, which is the Node representing all public libraries (and
has access to the groupwide keys).

C1 is a movie file that the Public Library makes available
to its members. Kcl is a key used to encrypt C1. GB[C1]
(not shown) is the governance information for C1 (e.g., rules
and associated information used for governing access to the
content). E(a,b) means ‘b’ encrypted with key ‘a’.

For purposes of illustration, assume that it is desired to set
a rule that a device can play the content C1 as long as (a) the
device belongs to someone who is a member of the library
and (b) the device is manufactured by ACME.

The content C1 is encrypted with Kc1. The rules program
is created, as well as the encrypted content key RK[C1]=E
(Kamp, E(Kpl, Kc1)). Both the rules program and RK[C1]
can be included in the governance block for the content,
GBIC1].

The portable device receives C1 and GB[C1]. For
example, both might be packaged in the same file, or
received separately. The portable device received L1 when
the user first installed his device after buying it. The portable
device received [.2 when the user paid his subscription fee
to the Public Library. The portable device received 1.3 when
it was manufactured (e.g., L3 was built in).

From L1, 1.2 and L3, the portable device is able to check
that Nip1 has a graph path to Ng (L1), Npl (L1+L2), and
Namp (L3). The portable device wants to play C1. The
portable device runs the rule found in GB[C1]. The rule can
check that Nip1 is indeed an ACME device (path to Namp)
and belongs to a member of the public library (path to Npl).
Thus, the rule returns “yes”, and the ordered list (Namp,
Npl).

The portable device uses L1 to compute Kg, and then [.2
to compute Kpl from Kg. The portable device also uses L3
to compute Kamp. The portable device applies Kpl and
Kamp to RK[C1], found in GB[C1], and computes Kcl. It
then uses Kcl to decrypt and play C1.

When Node keys are symmetric keys, as in the previous
examples, the content packager needs to have access to the
keys of the Nodes to which it wishes to “bind” the content.
This can be achieved by creating a Node that represents the
packager, and a link between that Node and the Nodes to
which it wishes to bind rules. This can also be achieved “out
of band” through a service, for instance. But in some
situations, it may not be possible, or practical to use sym-
metric keys. In that case, it is possible to assign a key pair
to the Nodes to which a binding is needed without shared
knowledge. In that case, the packager would bind a content
key to a Node by encrypting the content key with the target

US 9,466,054 B1

49

Node’s public key. To obtain the key for decryption, the
client would have access to the Node’s private key via a link
to that Node.

In the most general case, the Nodes used for the rules and
the Nodes used for computing content encryption keys need
not be the same. It is natural to use the same Nodes, since
there is a strong relationship between a rule that governs
content and the key used to encrypt it, but it is not necessary.
In some systems, some Nodes may be used for content
protection keys that are not used for expressing membership
conditions, and vice versa, and in some situations, two
different graphs of Nodes can be used, one for the rules and
one for content protection. For example, a rule could say that
all members of group Npl can have access to content C1, but
the content key Kcl may not be protected by Kpl, but may
instead by protected by the node key Kapl of node Napl,
which represents all public libraries, not just Npl. Or a rule
could say that you need to be a member of Namp, but the
content encryption key could be bound only to Npl.

4.7. Operation of DRM Virtual Machine (VM)

The discussion with respect to FIG. 21 above described
the operation of a DRM system at a high (Node and Link)
level, including the formation and enforcement of content
governance policies. FIG. 22 depicts an exemplary code
module 2200 of a DRM engine’s VM that implements the
formation and enforcement of such content governance
policies.

Four main elements of illustrative Code Module 2200,
shown in FIG. 22, include:
pkCM Atom: The pkCM Atom 2210 is the top-level Code
Module Atom. It contains a sequence of sub-atoms.
pkDS Atom: The pkDS Atom 2220 contains a memory
image that can be loaded into the Data Segment. The
payload of the Atom is a raw sequence of octet values.
pkCS Atom: The pkCS Atom 2230 contains a memory
image that can be loaded into the Code Segment. The
payload of the Atom is a raw sequence of octet values.
pkEX Atom: The pkEX Atom 2240 contains a list of export
entries. Each export entry consists of a name, encoded as an
8-bit name size, followed by the characters of the name,
including a terminating O, followed by a 32-bit integer
representing the byte offset of the named entry point (this is
an offset from the start of the data stored in the pkCS Atom).

4.7.1. Module Loader

In one embodiment, the Control VM is responsible for
loading Code Modules. When a Code Module is loaded, the
memory image encoded in pkDS Atom 2220 is loaded at a
memory address in the Data Segment. That address is
chosen by the VM Loader, and is stored in the DS pseudo-
register. The memory image encoded in the pkCS Atom
2230 is loaded at a memory address in the Code Segment.
That address is chosen by the VM Loader, and is stored in
the CS pseudo-register.

4.7.2. System Calls

In one embodiment, Control VM Programs can call
functions implemented outside of their Code Module’s Code
Segment. This is done through the use of the OP_CALL
instruction, that takes an integer stack operand specifying
the System Call Number to call. Depending on the System
Call, the implementation can be a Control VM Byte Code
routine in a different Code Module (for instance, a library of
utility functions), directly by the VM in the VM’s native
implementation format, or delegated to an external software
module, such as the VM’s Host Environment.

20

25

30

35

40

45

55

50

In one embodiment, several System Call Numbers are
specified:
SYS_NOP=0: This call is a no-operation call. It just returns
(does nothing else). It is used primarily for testing the VM.
SYS_DEBUG_PRINT=1: Prints a string of text to a debug
output. This call expects a single stack argument, specifying
the address of the memory location containing the null-
terminated string to print.
SYS_FIND_SYSCALL_BY_NAME=2: Determines
whether the VM implements a named System Call. If it does,
the System Call Number is returned on the stack; otherwise
the value -1 is returned. This call expects a single stack
argument, specifying the address of the memory location
containing the null-terminated System Call name that is
being requested.

4.7.3. System Call Numbers Allocation

In one embodiment, the Control VM reserves System Call
Numbers 0 to 1023 for mandatory System Calls (System
Calls that have to be implemented by all profiles of the VM).

System Call Numbers 16384 to 32767 are available for
the VM to assign dynamically (for example, the System Call
Numbers returned by SYS_FIND_SYSCALL_BY_NAME
can be allocated dynamically by the VM, and do not have to
be the same numbers on all VM implementations).

4.7.4. Standard System Calls

In one embodiment, several standard System Calls are
provided to facilitate writing Control Programs. Such stan-
dard system calls may include a call to obtain a time stamp
from the host, a call to determine if a node is Reachable,
and/or the like. System calls preferably have dynamically
determined numbers (e.g., their System Call Number can be
retrieved by calling the SYS_FIND_SYSCALL_BY_
NAME System Call with their name passed as the argu-
ment).

4.8. Interfaces Between DRM Engine Interface and Host
Application

Following are some exemplary high level descriptions of
the types of interfaces provided by an illustrative DRM
(client consumption) engine to a Host Application:
SystemName::CreateSession(hostContextObject)—Session
Creates a session given a Host Application Context. The
context object is used by the DRM engine to make callbacks
into the application.
Session::ProcessObject(drmObject)
This function should be called by the Host Application when
it encounters certain types of objects in the media files that
can be identified as belonging to the DRM subsystem. Such
objects include content control programs, membership
tokens, etc. The syntax and semantics of those objects is
opaque to the Host Application.
Session::OpenContent(contentReference)—Content
The host application calls this function when it needs to
interact with a multimedia content file. The DRM engine
returns a Content object that can be used subsequently for
retrieving DRM information about the content, and inter-
acting with such information.
Content::GetDrmInfo()
Returns DRM metadata about the content that is otherwise
not available in the regular metadata for the file.
Content::Create Action(actionInfo)—Action
The Host Application calls this function when it wants to
interact with a Content object. The actionlnfo parameter
specifies what type of action the application needs to per-
form (e.g., Play), as well as any associated parameters, if
necessary. The function returns an Action object that can

US 9,466,054 B1

51

then be used to perform the action and retrieve the content
key.

Action::GetKeyInfo()

Returns information that is necessary for the decryption
subsystem to decrypt the content.

Action::Check()

Checks whether the DRM subsystem will authorize the
performance of this action (i.e., whether Action::Perform()
would succeed).

Action::Perform()

Performs the action, and carries out any consequences (with
their side effects) as specified by the rule(s) that governs this
action.

Following are some exemplary high level descriptions of
the type of interface provided by an illustrative Host Appli-
cation to a DRM (client consumption) engine:
HostContext::GetFileSystem(type)—FileSystem
Returns a virtual FileSystem object to which the DRM
subsystem has exclusive access. This virtual FileSystem will
be used to store DRM state information. The data within this
FileSystem is readable and writeable only by the DRM
subsystem.

HostContext::GetCurrentTime()

Returns the current date/time as maintained by the host
system.

HostContext::Getldentity()

Returns the unique ID of this host.
HostContext::ProcessObject(dataObject)

Gives back to the host services a data object that may have
been embedded inside a DRM object, but that the DRM
subsystem has identified as being managed by the host (e.g.,
certificates).

HostContext:: VerifySignature(signatureInfo)

Checks the validity of a digital signature to a data object.
Preferably, the signaturelnfo object contains information
equivalent to the information found in an XMLSig element.
The Host Services are responsible for managing the keys
and key certificates necessary to validate the signature.
HostContext::CreateCipher(cipherType, keylnfo)—=Cipher
Creates a Cipher object that the DRM subsystem can use to
encrypt and decrypt data. A minimal set of cipher types will
preferably be defined, and for each a format for describing
the key info required by the cipher implementation.
Cipher::Encrypt(data)

The Cipher object referred to above, used to encrypt data.
Cipher::Decrypt(data)

The Cipher object referred to above, used to decrypt data.
HostContext::CreateDigester(digester Type)—Digester
Creates a Digester object that the DRM subsystem can use
to compute a secure hash over some data. A minimal set of
digest types will be defined.

Digester::Update(data)

The Digester object referred to above, used to compute the
secure hash.

Digester::GetDigest()

The Digester object referred to above, used to obtain the
secure hash computed by the DRM subsystem.

Following are some exemplary high level descriptions of
the type of interface provided by an illustrative DRM
(service-side packaging) engine to a Host Application:
SystemName::CreateSession(hostContextObject)—>Session
Creates a session given a Host Application Context. The
context object is used by the DRM Packaging engine to
make callbacks into the application.
Session::CreateContent(contentReferences| |)—Content
The Host Application will call this function in order to create
a Content object that will be associated with license objects

10

20

25

30

40

45

55

52

in subsequent steps. Having more than one content reference
in the contentReferences array implies that these are bound
together in a bundle (one audio and one video track for
example), and that the license issued should be targeted to
these as one indivisible group.
Content::SetDrmInfo(drmInfo)

The drmInfo parameter specifies the metadata of the license
that will be issued. The structure will be read and will act as
a guideline to compute the license into bytecode for the VM.
Content::GetDRMObjects(format)—drmObjects

This function is called when the Host Application is ready to
get the drmObjects that the DRM Packaging engine created.
The format parameter will indicate the format expected for
these objects (e.g., XML or binary atoms).
Content::GetKeys()—keys| |

This function is called by the Host Application when it needs
the keys in order to encrypt the content. In one embodiment
there will be one key per content reference.

Following are some exemplary high level descriptions of
the type of interface provided by an illustrative Host Appli-
cation to a DRM (service-side packaging) engine:
HostContext::GetFileSystem(type)—FileSystem
Returns a virtual FileSystem object to which the DRM
subsystem has exclusive access. This virtual FileSystem
would be used to store DRM state information. The data
within this FileSystem should only be readable and write-
able by the DRM subsystem.
HostContext::GetCurrentTime()—Time
Returns the current date/time as maintained by the host
system.

HostContext::Getldentity()—ID

Returns the unique ID of this host.
HostContext::PerformSignature(signaturelnfo, data)

Some DRM objects created by the DRM Packaging engine
will have to be trusted. This service, provided by the host,
will be used to sign the specified object.
HostContext::CreateCipher(cipherType, keylnfo)—=Cipher
Creates a Cipher object that the DRM Packaging engine can
use to encrypt and decrypt data. This is used to encrypt the
content key data in the ContentKey object.
Cipher::Encrypt(data)

The Cipher object referred to above, used to encrypt data.
Cipher::Decrypt(data)

The Cipher object referred to above, used to decrypt data.
HostContext::CreateDigester(digesterType)—Digester
Creates a Digester object that the DRM Packaging engine
can use to compute a secure hash over some data.
Digester:: Update(data)

The Digester object referred to above, used to compute the
secure hash.

Digester::GetDigest()

The Digester object referred to above, used to obtain the
secure hash computed by the DRM subsystem.
HostContext::GenerateRandomNumber()

Generates a random number that can be used for generating
a key.

5. Services

5.1. Overview

Having described the NEMO/DRM system from both an
architectural and operational perspective, we now turn our
attention to an illustrative collection of services, data types,
and related objects (“profiles”) that can be used to imple-
ment the functionality of the system.

As noted above, a preferred embodiment of the NEMO
architecture employs a flexible and portable way of describ-
ing the syntax of requests and responses associated with
service invocation, data types used within the framework,

US 9,466,054 B1

53

message enveloping, and data values exposed by and used
within the NEMO framework. WSDL 1.1 and above pro-
vides sufficient flexibility to describe and represent a variety
of types of service interface and invocation patterns, and has
sufficient abstraction to accommodate bindings to a variety
of different endpoint Nodes via diverse communication
protocols.

In one embodiment, we define a profile to be a set of
thematically related data types and interfaces defined in
WSDL. NEMO distinguishes a “Core” profile (which
includes the foundational set of data types and service
messages necessary to support fundamental NEMO Node
interaction patterns and infrastructural functionality) from
an application-specific profile, such as a DRM Profile
(which describes the Digital Rights Management services
that can be realized with NEMO), both of which are dis-
cussed below.

It will be appreciated that many of the data types and
services defined in these profiles are abstract, and should be
specialized before they are used. Other profiles are built on
top of the Core profile.

5.2. NEMO Profile Hierarchy

In one embodiment, the definition of service interfaces
and related data types is structured as a set of mandatory and
optional profiles that build on one another and may be
extended. The difference between a profile and a profile
extension is a relatively subtle one. In general, profile
extensions don’t add new data types or service type defini-
tions. They just extend existing abstract and concrete types.

FIG. 23 illustrates an exemplary profile hierarchy for
NEMO and DRM functionality. The main elements of this
profile hierarchy include:

Core Profile—At the base of this profile hierarchy lies Core
Profile 2300, which preferably shares both NEMO and
DRM functionality. This is the profile on which all other
profiles are based. It includes a basic set of generic types
(discussed below) that serve as the basis for creating more
complex types in the framework. Many of the types in the
Core Profile are abstract and will need to be specialized
before use.

Core Profile Extensions—Immediately above Core Profile
2300 are the Core Profile Extensions 2320, which are the
primary specializations of the types in Core Profile 2300,
resulting in concrete representations.

Core Services Profile—Also immediately above Core Pro-
file 2300, the Core Services Profile 2310 defines a set of
general infrastructure services, also discussed below. In this
profile, the service definitions are abstract and will need to
be specialized before use.

Core Services Profile Extensions—Building upon both Core
Profile Extensions 2320 and Core Services Profile 2310 are
the Core Services Profile Extensions 2330, which are the
primary specializations of the services defined in Core
Services Profile 2310, resulting in concrete representations.
DRM Profile—Immediately above Core Profile 2300 lies
DRM Profile 2340, upon which other DRM-related profiles
are based. DRM Profile 2340 includes a basic set of generic
types (discussed below) that serve as the basis for creating
more complex DRM-specific types. Many of the types in
DRM Profile 2340 are abstract and will need to be special-
ized before use.

DRM Profile Extensions—Building upon DRM Profile 2340
are the DRM Profile Extensions 2350, which are the primary
specializations of the types in DRM Profile 2340, resulting
in concrete representations.

DRM Services Profile—Also building upon DRM Profile
2340 is DRM Services Profile 2360, which defines a set of

20

25

30

40

45

65

54

general DRM services (discussed below). In this profile, the
service definitions are abstract and need to be specialized
before use.

Specific DRM Profile—DBuilding upon both DRM Profile
Extensions 2350 and DRM Services Profile 2360 is the
Specific DRM Profile 2370, which is a further specialization
of the DRM services defined in DRM Services Profile 2360.
This profile also introduces some new types and further
extends certain types specified in Core Profile Extensions
2320.

5.3. NEMO Services and Service Specifications

Within this profile hierarchy lies, in one embodiment, the
following main service constructs (as described in more
detail above):

Peer Discovery—the ability to have peers in the system
discover one another.

Service Discovery—the ability to discover and obtain infor-
mation about services offered by different peers.
Authorization—the ability to determine if a given peer (e.g.,
a Node) is authorized to access a given resource (such as a
service).

Notification—services related to the delivery of targeted
messages, based on specified criteria, to a given set of peers
(e.g., Nodes).

Following are definitions (also discussed above) of some of
the main DRM constructs within this example profile hier-
archy:

Personalization—services to obtain the credentials, policy,
and other objects needed for a DRM-related endpoint (such
as a CE device, music player, DRM license server, etc.) to
establish a valid identity in the context of a specific DRM
system.

Licensing Acquisition—services to obtain new DRM
licenses.

Licensing Translation—services to exchange one new DRM
license format for another.

Membership—services to obtain various types of objects
that establish membership within some designated domain.

The NEMO/DRM profile hierarchy can be described, in
one embodiment, as a set of Generic Interface Specifications
(describing an abstract set of services, communication pat-
terns, and operations), Type Specifications (containing the
data types defined in the NEMO profiles), and Concrete
Specifications (mapping abstract service interfaces to con-
crete ones including bindings to specific protocols). One
embodiment of these specifications, in the form of Service
Definitions and Profile Schemas, is set forth in Appendix 1
(C) hereto.

6. Additional Application Scenarios

FIG. 24 illustrates a relatively simple example of an
embodiment of NEMO in operation in the context of a
consumer using a new music player to play a DRM-pro-
tected song. As shown below, however, even this simple
example illustrates many different potential related applica-
tion scenarios. This example demonstrates the bridging of
discovery services—using universal plug and play (UPnP)
based service discovery as a mechanism to find and link to
a UDDI based directory service. It also details service
interactions between Personal Area Network (PAN) and
Wide Area Network (WAN) services, negotiation of a
trusted context for service use, and provisioning of a new
device and DRM service.

Referring to FIG. 24, a consumer, having bought a new
music player 2400, desires to play a DRM-protected song.
Player 2400 can support this DRM system, but needs to be
personalized. In other words, Player 2400, although it
includes certain elements (not shown) that render it both

US 9,466,054 B1

55

NEMO-enabled and DRM-capable, must first perform a
personalization process to become part of this system.

Typically, a NEMO client would include certain basic
elements illustrated in FIGS. 54 and 6 above, such as a
Service Access Point to invoke other Node’s services, Trust
Management Processing to demonstrate that it is a trusted
resource for playing certain protected content, as well as a
Web Services layer to support service invocations and the
creation and receipt of messages. As discussed below, how-
ever, not all of these elements are necessary to enable a Node
to participate in a NEMO system.

In some embodiments, client nodes may also include
certain basic DRM-related elements, as illustrated in FIGS.
12a and 13-15 above, such as a DRM client engine and
cryptographic services (and related objects and crypto-
graphic keys) to enable processing of protected content,
including decrypting protected songs, as well as a media
rendering engine to play those songs. Here, too, some such
elements need not be present. For example, had Player 2400
been a music player that was only capable of playing
unprotected content, it might not require the core crypto-
graphic elements present in other music players.

More specifically, in the example shown in FIG. 24,
Player 2400 is wireless, supports the UPnP and Bluetooth
protocols, and has a set of X.509 certificates it can use to
validate signatures and sign messages. Player 2400 is
NEMO-enabled in that it can form and process a limited
number of NEMO service messages, but it does not contain
a NEMO Service Access Point due to resource constraints.

Player 2400, however, is able to participate in a Personal
Area Network (PAN) 2410 in the user’s home, which
includes a NEMO-enabled, Internet-connected, Home Gate-
way Device 2420 with Bluetooth and a NEMO SAP 2430.
The UPnP stacks of both Player 2400 and Gateway 2420
have been extended to support a new service profile type for
a “NEMO-enabled Gateway” service, discussed below.

When the user downloads a song and tries to play it,
Player 2400 determines that it needs to be personalized, and
initiates the process. For example, Player 2400 may initiate
a UPnP service request for a NEMO gateway on PAN 2410.
It locates a NEMO gateway service, and Gateway 2420
returns the necessary information to allow Player 2400 to
connect to that service.

Player 2400 then forms a NEMO Personalization request
message and sends it to the gateway service. The request
includes an X.509 certificate associated with Player 2400°s
device identity. Gateway 2420, upon receiving the request,
determines that it cannot fulfill the request locally, but has
the ability to discover other potential service providers.
However, Gateway 2420 has a policy that all messages it
receives must be digitally signed, and thus it rejects the
request and returns an authorization failure stating the policy
associated with processing this type of request.

Player 2400, upon receiving this rejection, notes the
reason for the denial of service and then digitally signs (e.g.,
as discussed above in connection with FIG. 15) and re-
submits the request to Gateway 2420, which then accepts the
message. As previously mentioned, Gateway 2420 cannot
fulfill this request locally, but can perform service discovery.
Gateway 2420 is unaware of the specific discovery protocols
its SAP 2430 implementation supports, and thus composes
a general attribute-based service discovery request based on
the type of service desired (personalization), and dispatches
the request via SAP 2430.

SAP 2430, configured with the necessary information to
talk to UDDI registries, such as Internet-Based UDDI Reg-
istry 2440, converts the request into a native UDDI query of

25

40

45

56

the appropriate form and sends the query. UDDI Registry
2440 knows of a service provider that supports DRM
personalization and returns the query results. SAP 2430
receives these results and returns an appropriate response,
with the necessary service provider information, in the
proper format, to Gateway 2420.

Gateway 2420 extracts the service provider information
from the service discovery response and composes a new
request for Personalization based on the initial request on
behalf of Player 2400. This request is submitted to SAP
2430. The service provider information (in particular, the
service interface description of Personalization Service
2450) reveals how SAP 2430 must communicate with a
personalization service that exposes its service through a
web service described in WSDL. SAP 2430, adhering to
these requirements, invokes Personalization Service 2450
and receives the response.

Gateway 2420 then returns the response to Player 2400,
which can use the payload of the response to personalize its
DRM engine. At this point, Player 2400 is provisioned, and
can fully participate in a variety of local and global con-
sumer oriented services. These can provide full visibility
into and access to a variety of local and remote content
services, lookup, matching and licensing services, and addi-
tional automated provisioning services, all cooperating in
the service of the consumer. As explained above, various
decryption keys may be necessary to access certain pro-
tected content, assuming the consumer and Player 2400
satisfy whatever policies are imposed by the content pro-
vider.

Thus, a consumer using a personal media player at home
can enjoy the simplicity of a CE device, but leverage the
services provided by both gateway and peer devices. When
the consumer travels to another venue, the device can
rediscover and use most or all of the services available at
home, and, through new gateway services, be logically
connected to the home network, while enjoying the services
available at the new venue that are permitted according to
the various policies associated with those services. Con-
versely, the consumer’s device can provide services to peers
found at the new venue.

Clearly, utilizing some or all of these same constructs
(NEMO Nodes, SAPs, Service Adaptation Layers, various
standards such as XML, WSDL, SOAP, UDDI, etc.), many
other scenarios are possible, even within the realm of this
DRM music player example. For example, Player 2400
might have contained its own SAP, perhaps eliminating the
need for Gateway 2420. UDDI Registry 2440 might have
been used for other purposes, such as locating and/or licens-
ing music content. Moreover, many other DRM applications
could be constructed, e.g., involving a licensing scheme
imposing complex usage and distribution policies for many
different types of audio and video, for a variety of different
categories of users. Also, outside of the DRM context,
virtually any other service-based applications could be con-
structed using the NEMO framework.

As another example, consider the application of NEMO in
a business peer-to-peer environment. Techniques for busi-
ness application development and integration are quickly
evolving beyond the limits of traditional tools and software
development lifecycles as practiced in most IT departments.
This includes the development of word processing docu-
ments, graphic presentations, and spreadsheets. While some
would debate whether these documents in their simplest
form represent true applications, consider that many forms
of these documents have well defined and complex object
models that are formally described. Such documents or other

US 9,466,054 B1

57

objects might include, for example, state information that
can be inspected and updated during the lifecycle of the
object, the ability for multiple users to work on the objects
concurrently, and/or additional arbitrary functionality. In
more complicated scenarios, document-based information
objects can be programmatically assembled to behave like
full-fledged applications.

Just as with traditional software development, these types
of objects can also benefit from source control and account-
ability. There are many systems today that support document
management, and many applications directly support some
form of document control. However most of these systems
in the context of distributed processing environments exhibit
limitations, including a centralized approach to version
management with explicit check-in and checkout models,
and inflexible (very weak or very rigid) coherence policies
that are tied to client rendering applications or formats
particularly within the context of a particular application
(e.g., a document).

Preferred embodiments of NEMO can be used to address
these limitation by means of a P2P policy architecture that
stresses capability discovery and format negotiation. It is
possible to structure the creation of an application (e.g., a
document) in richer ways, providing multiple advantages.
Rich policy can be applied to the objects and to the structure
of'the application. For example, a policy might specify some
or all of the following:

Only certain modules can be modified.

Only object interfaces can be extended or implementa-

tions changed.

Deletions only allowed but not extensions.

How updates are to be applied, including functionality
such as automatic merging of non-conflicting updates,
and application of updates before a given peer can send
any of its updates to other peers.

Policy-based notification such that all peers can be noti-
fied of updates if they choose, in order to participate in
direct synchronization via the most appropriate mecha-
nisms.

Support updates from different types of clients based on
their capabilities.

In order to achieve this functionality, the authoring appli-
cation used by each participant can be a NEMO-enabled
peer. For the document that is created, a template can be
used that describes the policy, including who is authorized
and what can be done to each part of the document (in
addition to the document’s normal formatting rules). As long
as the policy engine used by the NEMO peer can interpret
and enforce policy rules consistent with their semantics, and
as long as the operations supported by the peer interfaces
allowed in the creation of the document can be mapped to a
given peer’s environment via the Service Adaptation Layer,
then any peer can participate, but may internally represent
the document differently.

Consider the case of a system consisting of different
NEMO peers using services built on the NEMO framework
for collaboration involving a presentation document. In this
example, a wireless PDA application is running an applica-
tion written in Java, which it uses for processing and
rendering the document as text. A different implementation
running under Microsoft Windows® on a desktop worksta-
tion processes the same document using the Microsoft
Word® format. Both the PDA and the workstation are able
to communicate, for example, by connection over a local
area network, thus enabling the user of the PDA and the user
of the workstation to collaborate on the same document
application. In this example:

5

10

20

25

30

35

40

45

50

55

60

58

NEMO peers involved in the collaboration can discover
each other, their current status, and their capabilities.

Each NEMO peer submits for each committable change,
its identity, the change, and the operation (e.g., dele-
tion, extension, etc.).

All changes are propagated to each NEMO peer. This is
possible because each NEMO peer can discover the
profile and capabilities of another peer if advertised. At
this point the notifying peer can have the content
change encoding in a form acceptable by the notified
peer if it is incapable of doing so. Alternatively the
accepting peer may represent the change in any format
it sees fit upon receipt at its interface.

Before accepting a change the peer verifies that it is from
an authorized NEMO participant.

The change is applied based on the document policy.

As another example, consider the case of a portable
wireless consumer electronics (CE) device that is a NEMO-
enabled node (X), and that supports DRM format A, but
wants to play content in DRM format B. X announces its
desire to render the content as well as a description of its
characteristics (e.g., what its identity is, what OS it supports,
its renewability profile, payment methods it supports, and/or
the like) and waits for responses back from other NEMO
peers providing potential solutions. In response to its query,
X receives three responses:

(1) Peer 1 can provide a low quality downloadable version

of content in clear MP3 form for a fee of $2.00.

(2) Peer 2 can provide high quality pay-per-play streams
of content over a secure channel for $0.50 per play.

(3) Peer 3 can provide a software update to X that will
permit rendering of content in DRM format B for a fee
of $10.00.

After reviewing the offers, X determines that option one
is the best choice. It submits a request for content via offer
number one. The request includes an assertion for a delega-
tion that allows Peer 1 to deduct $2.00 from X’s payment
account via another NEMO service. Once X has been
charged, then X is given back in a response from Peer 1 a
token that allows it to download the MP3 file.

If instead, X were to decide that option three was the best
solution, a somewhat more complicated business transaction
might ensue. For example, option three may need to be
represented as a transactional business process described
using a NEMO Orchestration Descriptor (NOD) imple-
mented by the NEMO Workflow Collator (WFC) elements
contained in the participating NEMO enabled peers. In order
to accomplish the necessary software update to X, the
following actions could be executed using the NEMO
framework:

X obtains permission from its wireless service provider

(B) that it is allowed to receive the update.

Wireless service provider B directly validates peer three’s
credentials in order to establish its identity.

X downloads from B a mandatory update that allows it to
install 3rd party updates, their is no policy restriction on
this, but this scenario is the first triggering event to
cause this action.

X is charged for the update that peer three provides.

X downloads the update from peer three.

In this business process some actions may be able to be
carried out concurrently by the WFC elements, while other
activities may need to authorized and executed in a specific
sequence.

Yet another example of a potential application of the
NEMO framework is in the context of online gaming. Many
popular multiplayer gaming environment networks are

US 9,466,054 B1

59

structured as centralized, closed portals that allow online
garners to create and participate in gaming sessions.

One of the limitations of these environments is that the
users generally must have a tight relationship with the
gaming network and must have an account (usually associ-
ated with a particular game title) in order to use the service.
The typical gamer must usually manage several game
accounts across multiple titles across multiple gaming net-
works and interact with game-provider-specific client appli-
cations in order to organize multiple player games and
participate within the networks. This is often inconvenient,
and discourages online use.

Embodiments of the NEMO framework can be used to
enhance the online gaming experience by creating an envi-
ronment that supports a more federated distributed gaming
experience, making transparent to the user and the service
provider the details of specific online game networks. This
not only provides a better user experience, thereby encour-
aging adoption and use of these services, but can also reduce
the administrative burden on game network providers.

In order to achieve these benefits, gaming clients can be
personalized with NEMO modules so that they can partici-
pate as NEMO peers. Moreover, gaming networks can be
personalized with NEMO modules so that they can expose
their administrative interfaces in standardized ways. Finally,

10

15

20

60

NEMO trust management can be used to ensure that only
authorized peers interact in intended ways.

For example, assume there are three gaming network
providers A, B, and C, and two users X and Y. User X has
an account with A, and User Y has an account with B. X and
Y both acquire a new title that works with C and want to play
each other. Using the NEMO framework, X’s gaming peer
can automatically discover online gaming provider C. X’s
account information can be transmitted to C from A, after A
confirms that C is a legitimate gaming network. X is now
registered with C, and can be provisioned with correct
tokens to interact with C. User Y goes through the same
process to gain access to C using its credentials from B.
Once both X and Y are registered they can now discover
each other and create an online gaming session.

This simple registration example can be further expanded
to deal with other services that online gaming environments
might provide, including, e.g., game token storage (e.g., in
lockers), account payment, and shared state information
such as historical score boards.

While several examples were presented in the context of
enterprise document management, online gaming, and
media content consumption, it will be appreciated that the
NEMO framework and the DRM system described herein
can be used in any suitable context, and are not limited to
these specific examples.

US 9,466,054 B1
61 62

APPENDIX 1 (A)
Systems and Methods for Peer-to-Peer Service Orchestration

US 9,466,054 B1
63 64

APPENDIX 1 (B)
Digital Rights Management Engine Systems and Methods

US 9,466,054 B1
65 66

APPENDIX 1 (C)

Service Definitions and Profile Schemas
Definitions

element nsdic:Base

=

hitp://www.nemo-community.com/schemas/nemao/nsdif2003/09/core
nadic:Base

&

Use &
xsd:anyURI optional
description xsd:string optional

complexType nsdlc:Base

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core
natic:Base

Crypioitevinfo CryotoevinfoPair DRMInte License MembershinTeken nagioBvidence
nsdicinterizceBinding nadic:Nade nadic

isdsidentitvinfc nsdic:Policy nedic:Servicaltribute

nadio: ServiceAltribuleValue nadie;Serviceinio nadie: ServiceMussags nedis:SarvicePayivag

Hatus nedic TargetGriteria Qotopusiode Persma{izy UBBiKevedReferancs

AN

xsd:anyURI opffonal
description xsd:string aptional

complexType nsdic:Evidence

N

http://www.nemo-community.com/schermas/nemo/nsdl/2003/08/core

extension of nsdie:Bass

ServiceinteriaceduthorizationReguesiievidencs nsdiciinterfaceBinding/givenBvidence
nedicinterfaceBindingrequiredvidenss
AL AssertionEvidence WSPolicyfs

ionEvidencs

id xsd:anyURI optional
description xsd:string optionat

complexType nsdlc:interfaceBinding

am

(nsdlc:lntarfaceﬂindinq E-:]—-@'

1.4 givenEvidence

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core
extension of psdic:Base

requiredEvidence givenEvidence

nsdic:Servicginfofinteriace
WebServicelnterfaceBinding

N ype lise
id xsd:anyURI optional
description xsd:string optional

US 9,466,054 B1

67 68

element nsdlc:InterfaceBinding/requiredEvidence

rtzquiredEuidem:t‘:JEE

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core
wyos nedieBvidence

D

A 3 @ A
id xsd:anyURI optional
description xsd:string optional

element nsdic:InterfaceBinding/givenEvidence

o0

owerenience |

hitp:/Awww.nemo-community.com/schemas/nema/nsdi2003/09/core
nadis:Evidence

N Typs
id xsd:anyURI optional
description xsd:string optional

complexType nsdic:Node

THE

http://www.nemo-community.com/schemas/nemo/nsd/2003/09/core
extension of nsdic:Base

servics Kentitvinde

SimpleNamedNoede
Namea & Uss
id xsd:anyURI optional
description xsd:string optional
domain xsd:anyURI required

element nsdic:Node/service

Q&

=i

'--1: attribute

http://www.nema-community.com/schemas/nemo/nsdl/2003/09/core
nadio:Serviceinie

interface atiribute

3 G Lgs
id xsd:anyURl optional
description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required

service_type xsd:anyURI required

US 9,466,054 B1

69 70

element nsdic:Node/identityinfo

httpz//www.nemo-community.com{schemas/nemo/nsdl/2003/09/core
nadio:Nodeldentitvinfo

xsd:anyURI oBtionaI
description xsd:string optional

complexType nsdic:Nodeldentitylnfo

(nsdicHodeldentityinfo |

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core
vpe extension of psdic:Base

negdio:Nedefidentitvinfo NodeldentitvinfoTargstCriteriafindsntityinie

Rafarenceiodeldanttyinie Simplsididentitvinfe SimplsSeriaiNumberNodeidentityinfe
X508Centificateidentitvinge

Name

Nawms Typa s e
id xsd:anyURI optional
description xsd:string optional

complexType nsdlc:Policy

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core
extension of nsdic: Base

ServicsinterfosccfuthorizationBesponsyascess polioy
Sali AssortionPolicy WaPolicvAssertionBolicy

L

xsd:anyURI optionai
description xsd:string aptional

hitp/Aww.nemo-community.com/schemas/nemo/nsdl/2003/09/core
extension of pudic:Base

psdie:Servicsinfoatribute StdbuieBasedSarviceBissovanBeguestfatiribute

i 2 Usag i t 0 A
id xsd:anyURI optional

description xsd:string optional

type xsd:anyURI

element nsdic:ServiceAttribute/value

http://www.nermo-community.corn/schemas/nemo/nsdi/2003/09/core
ivpe nsdic:BerviceAttributeValug

id xsd:anyURI optional
description xsd:string optional

US 9,466,054 B1
71

complexType nsdlc:ServiceAttributeValue

(nsdlc:Seruicehttribute\lalue

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core
extension of pyglic:Base

nadic: ServiceAtribulelvalue
StringServiceftinibuta¥alue

U
optional
optional

xsd:anyURI
xsd:string

description

complexType nsdic:Servicelnfo

{3

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core

extension of ngdic:Base

nsdic: Node/servies nsdic:ServiceMessaay/sarvice
UDDIBassdBerviceDiscoveryResponsaiservics
AltribuieBasedServiceDiscoveryResponse/service
ServigelnterfaseduthorizationRequestiservicsinin
SenviceintertaceduthorizationResoonselsarviceinio

PearDigoovery Pergonalization Servicelliacovery
e Uss {

a 3] Dy
id xsd:anyUR! optional

description xsd:string optional
service_profile xsd:anyURI required
service_categor xsdianyUR! required

y

service_ tvpe xsd:anyURI required

element nsdic:Servicelnfo/interface

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core

nadicdinterfaceBinding

requiredByidence givenBvidence

N

Usa
optional
optional

> sy
id xsd:anyURI
description xsd:string

72

Suthorization License.&cgdﬁsitiﬁn LicensaTransiztion MembershinTokenficquisition Notification

pd

US 9,466,054 B1
73 74

element nsdlc:Servicelnfo/attribute

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core

nadie:SaxvviceAtribute

vaiug

LISE

id A xsd:anyURI optional
description xsd:string optional
type xsd:anyURI

complexType nsdic:ServiceMessage

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core

extension of nsdiz:Bass

pavicad siatus service usage

N 3 Use
id xsd:anyURI optional
description xsd:string optional

e

element nsdic:ServiceMessage/payload

N 2 iina
id xsd:anyUR! optional
description xsd:string optional

US 9,466,054 B1
75 76

element nsdlc:ServiceMessage/status

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core

e nedie:Satus

b

id xsd:anyURI optional
description xsd:string optional
majorCode xsd:anyURI
minorCode xsd:anyURI

element nsdlc:ServiceMessage/service

m

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/care

s psdic:Servigeinfo

intarface altribute

id)-(sd:anyURI optional

description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anylRI| required
y

service_type xsd:anyURI| required

element nsdic:ServiceMessage/usage

hitp://wwew.nemo-community.com/schemas/nemo/nsd/2003/09/core

negdic: Messacelsags

REQUEST
RESPONSE
NOTIFICATION

US 9,466,054 B1
77 78

complexType nsdic:ServicePayload

(nsdlc:Seruil:ePonad E’l—(—-_--jzlv

http//www.nemo-community.com/schemas/nemo/nsdl/2003/09/core

extension of psdic:Base

nsdic:ServiceMsssageipavioad

AtributeBasedServiceRiscoveryRoguest AtribuleBassdBerviceDiscoveryResponss
QetopuslicensgicguisitionReguest OctepuskicensedoquisiionBesponse
OctopusiicensatransiationBecusst OctopusticenseTransiationResponse
OetopusPersonalizationRaguest QotopusParsonalizationResponse

: ServicelnterfasedutiorizationResnonss
UDDiBasedServicellscoveryReguast UBDIBasedServiceDiscovarvlesponse

UPnPReeritiscoveryReguest UPnPPRasrliscoveryRessonss

xsd:anyURI optional
description xsd:string opti

complexType nsdic:Status

http:/Awww.nemo-community.com/schemas/nemo/nsdl/2003/09/core

extension of pedic:Base

nadis:ServiceMassaga/staius

id - xsid:anyURI 6p‘nonal

description xsd:string optional
majorCode xsd:anyURI
minorCode xsd:anyURI

complexType nsdic:TargetCriteria

(nsdlc:TargetCrileria E]—(-m_--:E]- -

hitp:/Awarw.nemo-community.com/schemas/nemo/nsdl/2003/09/core

e extension of gadic:Bass

NodeldentitvinfoTargeiCriteria
SipleBerviceTineTaraaiCriteria
Ty Use
xsd:anyURI optional
description xsd:string optional

simpleType nsdic:Messagelsage

[RERNEEN hitp://www.nemo-community.com/schemas/nemo/nsdl2003/09/core

restriction of xsd:string
nedimdervicolessage/usage

REQUEST
RESPONSE
NOTIFICATION

US 9,466,054 B1
79 80

complexType NodeldentityinfoTargetCriteria

(HodeldentitylnfoTargetCriteria »

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
extension of ngdic: VaraetCriteria
indantityinfo

N i iisg
id xsd:anyURI optional
description xsd:string optional

element NodeldentitylnfoTargetCriteria/indentityinfo

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
asdio: Nedaidantitvinfe

8 fae

id xsd:anyURI 6Etfbnal
description xsd:string optional

complexType ReferenceModeldentityinfo

(Referenceﬂodeldentitylnfu

http:/fwww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

extension of pedic:Nodeldentitvini

referance
id xsd:anyURI optional
description xsd:string optional

element ReferenceModeldentitylnfo/reference

reference

http:/fwww.nemo-community.com/schemas/nemo/nsdi2003/09/core/ext/01
xsd:anyURi

complexType SAMLAssertionEvidence

.o

http://varw.nemo-community.com/schemas/nemo/nsd2003/09/core/ext/0l

extension of psdic:Evidence
id xsd:anyURI optional
description xsd:string optional

US 9,466,054 B1
81 82

complexType SAMLAssertionPolicy

(SAMLAssertionPolicy E:]—E)E}

http//www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

0.0

extension of ngdic:Policy

Nawa v U
id xsd:anyURI optional
description xsd:string optional

complexType Simpleldidentityinfo
TEE (Simpleldidentityinfo B~ 5 simpleid |

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
extension of pgdis: Nodeidentitvinio
sivapleid

d S ;nyUHl opticnal
description xsd:string optional

element Simpleldidentitylnfo/simpleid
http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

woa xsd:anyUR)

complexType SimpleNamediNode

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

extension of padic:Node

seryice identitvinde name

Nams Tyne SN Fived
id xsd:anyURI optional
description xsd:string optional
domain xsd:anyURI raquired

element SimpleNamedNode/name

am

http://www.nemo-community.com/schemas/nemo/nsdi/2003/08/core/ext/01

xsd:anyURI

US 9,466,054 B1
83 84

complexType SimplePropertyTypeTargetCriteria

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
extension of nadis:TarasiCriteria

sorvice profile servive service id
Narns T

N i Use
id xsd:anylRI optional
description xsd:string optional

ne

element SimplePropertyTypeTargetCriteria/service_profile

Fervice profie |

hitp:/Avww.nema-community.comischemas/nemo/nsdlf2003/09/core/ext/C1

xsd:anyURI

element SimplePropertyTypeTargetCriteria/service_

“service

http://www.nemao-community.com/schemas/memo/nsdl/2003/09/core/ext/01

xsd:anyURI

element SimplePropertyTypeTargetCriteria/service_id

ot

“service_id

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

xsd:anyURI

complexType SimpleSerialNumberNodeldentitylnfo

(SimpleSerialNumberNodeIdentit... :H |[]—!‘ seriainumber IjE

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

extension of asdic:Nodeldeniityinie

xsd:anyUR} c;;;tidnal
description xsd:string optional

US 9,466,054 B1
85

86

element SimpleSerialNumberNodeldentityinfo/serialnumber

http://www.nemo-community.com/schemas/nemo/nsd/2003/09/core/ext/O1
xsd:string

complexType SimpleServiceTypeTargetCriteria

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

extension of nadis: TargetCriteria

service profile sepvice service Id
Nama
id
description

XS :ényURI 6p bnal
xsd:string optional

element SimpleServiceTypeTargetCriteria/service_profile

Fervce profic |

(o2

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
iyps xsd:anyURI

element SimpleServiceTypeTargetCriteria/service _

http://Aww.nemo-community.com/schemas/nemo/nsdl/2003/08/corefext/01
xsd:anyURI

element SimpleServiceTypeTargetCriteria/service_id

hitp:/fww.nemo-community.com/schemas/nemo/nsdl/2003/09/corefext/01
xsd:anyURI

US 9,466,054 B1
87 88

complexType StringServiceAttributeValue
(StringServiceattributeValue E1-{—=— - stringualue |

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

extension of gadic: BervicedribuieYaive

stringvalus
id isd:ényURl dbﬁbnal
description xsd:string optional

element StringServiceAttributeValue/stringvalue

i

http://www.nemo-community.com/schemas/nemo/nsd/2003/09/core/ext/01

xsd:string

complexType WebServicelnterfaceBinding

m

hitp/fwww.nemo-community.com/schemas/nemo/nsdl/2003/09/corefext/01

extension of nadic:interiaceBingding
reguiredEvidence givenEvidence
2 WebServicsidedfaceBindinalitersl WebServiceinisrfaceBindingWsDL

B3

G

Namg >
id :anyURI optional
description xsd:string optional

complexType WebServiceinterfaceBindingLiteral

(ed

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

extension of WebSernvicalmteriaceBinding

US 9,466,054 B1
89 90

reguiredEvidence givenEvidence service namespace soap _action service interfacename servies interfsceur!

Ty i £ e ¥ E i
id xsd:anyURI optional
description xsd:string optional

element WebhServicelnterfaceBindingLiteral/service_namespace

[eervice namespace |

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

fype xsd:string

element WebServicelnterfaceBindingl.iteral/soap_action

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

xsd:string

element WebServicelnterfaceBindingLiteral/service_interfacename

Fseruice_interfacename I

hitp://www.nemo-community.com/schemas/nemo/nsdif2003/09/core/ext/01

xsd:string

element WebServicelnterfaceBindingLiteral/service _interfaceurl

Fseruice_interfaceurl

hitp//www.nemo-community.com/schemas/nemo/nsdl/i2003/09/core/ext/01
yoe xsd:string
complexType WebServicelnterfaceBindingWSDL

(WebSerui-:elnterﬁceBindingws... =

“wadl_description |

hitp:/Awww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
extension of WebServicelnterfageBinding

rsauiredEyidends givenBvidence wsdl descrintion

-

id xsd:anyURI optional
description xsd:string optional

element WebServicelnterfaceBindingWSDL/wsdl_description

htip:/Aww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01
xsd:anyURi

US 9,466,054 B1
91 92

complexType WSPolicyAssertionEvidence

EIany

(WSPoIicyAsseﬂionEuidence E]—@EI—

http:/Avww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

v extension of nadic:Bvidencs

id . xsd:ényURI optional
description xsd:string optional

complexType WSPolicyAssertionPolicy

o

(wsPalicyAssertionPolicy

EaCs)

httpz//www.nemo-community.comsschemas/nemo/nsdl/2003/09/core/ext/01

extension of ngdic:Poligy

Nidoniaeg Y 1 ine
NawR RSN

id xsd:anyURI aoptional
description xsd:string optional

complexType X509Certificateldentitylnfo

(xs0acertificateldentitylnfo [—-— 1| x508certdata

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/ext/01

tyre extension of padia:Nodeldentitvinfg
x508cestdatn

QelopusPersonatizalivnRequestidentity

Name fype tise Dalaut An
id xsd:anyURI optional
description xsd:string optional

element X509Certificateldentityinfo/x509certdata

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/corefext/01

xsd:base84Binary

complexType Authorization

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc

extension of nagdic:Serviceinio

interface attributa

Servicelnterfaceduihorization

] U

xsd:anyURI optional

id
description xsd:string optional

US 9,466,054 Bl
93 94

service_profile xsd:anyURI required
service_categor xsd:anyURI required
service_type xsd:anyURI required

complexType Notification

&

-4 attribute [}

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc

extension of psdic:Serviceinio

interface attributs

R

§ LR Usa Fixag
id xsd:anyURI optional
description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required
service_type xsd:anyURI required

complexType PeerDiscovery

{3

PeerDiscovery

attribute

.
1

-
1

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve
extension of pggdic:Servigeinia

interfage atiributs

UPnPPearDiscovery
id :anyURI oﬁﬁcnal
description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required

y
service_type xsd:anyURI required

US 9,466,054 B1
95 96

complexType ServiceDiscovery

--. attribute

hitp://www.nemo-community.com/schemas/nemo/nsdi/2003/09/core/svc

extension of nagic:Ssrviceinio

interiace atiribute

AtributnBasedBerviceRiscovery UDRIRased Servicabiscoverny

Tene e o
Ty PR L3

xsd:anyURI aptional
description xsd:string cptional
service_profile xsd:anyUR! required
sefvice_categor xsd:anyURI required
¥
service_type xsd:anyUR! required

complexType AttributeBasedServiceDiscovery

&

(mtrihuteBasedSeruicel]iscouery =

.

*
]

-1
P

hitp//www.nemo-community.com/schemas/nemo/nsdl2003/09/core/sve/ext/01
extension of Sarviceliscovery

interiace aliribute

Uga

id).céd:anyURl optional

s

description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURi required

Y
service_type xsd:anyURi required

US 9,466,054 B1

97 98

complexType AttributeBasedServiceDiscoveryRequest

(AttributeBasedServiceDiscover.

O

type extension of nadic:ServicaPavicad

id xsd:;myUHl optional
description xsd:string optional

element AttributeBasedServiceDiscoveryRequest/service profile

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01
xsd:anyURI

element AttributeBasedServiceDiscoveryRequest/service _category

hitp://www.nemo-community.com/schemas/nemo/nsdi/2003/09/core/svc/ext/01
type xsd:anyURi

http://www.nemo-community.com/schemas/nemo/nsdl/2003/08/core/sve/ext/01
oo xsd:anyURI

US 9,466,054 B1
99 100

element AttributeBasedServiceDiscoveryRequest/attribute

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/01

nsdic: Servicefiributs

-

s
xsd:anyUR] optional
description xsch:string optional

type xsd:anyUR]

complexType AttributeBasedServiceDiscoveryResponse

(httributeBasedServiceBiscouer...

hitp//www.nemo-community.com/schemas/nemo/nsdl/2003/08/core/svc/ext/01
type extension of pedic:ServicePavioad

sarvice

N

xsd:anyURI optibnal
description xsd:siring optional

element AttributeBasedServiceDiscoveryResponse/service

=il

hitp:/iwww.nemo-community.com/schemas/nemo/nsdi/2003/09/core/svc/ext/01

negic:Ssrvicsinfo

interface atiribute

s

id ;anyURI] optional
description xsd:string optional
service . profile xschanyUR] required
service_categor xsd:anyURI reguired

y
service, type xsd:anyURI required

US 9,466,054 B1
101 102

complexType ServicelnterfaceAuthorization

-+ attribute [|

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/01

extension of Authorization

interface attribute

8 Y Usa

id xsd:anyURI optional
description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required
y

service_ type xsd:anyURI required

complexType ServicelnterfaceAuthorizationRequest

(ServiceinterfaceAuthorizationR... E}

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/01

o extension of nsdic:ServicePavioad

sarviceinio gvidence

id)‘(sd:\é\nyURI optional
description xsd:string optional

element ServicelnterfaceAuthorizationRequest/serviceinfo

3 N sy

1-1: attribute

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/01

wype nedic:Ssrviesinfg

interface atiribute

id xsd:anyURI optional

description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required

y

US 9,466,054 B1
103 104

service, fype xsd:anyURI required

element ServicelnterfaceAuthorizationRequest/evidence

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/01

nsdis:Bvideues

id xé&:ényURl optional
description xsd:string optional

complexType ServicelnterfaceAuthorizationResponse

(Seruil:elnlerfaceAUthorizationR...

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01
extension of ngdic:ServicePayicad

serviceinio aceess policy

Mavvvie
NEae

id);sd:anyURI optional
description xsd:string optional

element ServicelnterfaceAuthorizationResponse/serviceinfo

o

gerviceinfo

-4 attribute

hitp//www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01
wpe nsdiciServicsinie

interiacs ativbuls

¥

id xsd:anyURI optional
description xsd:string optional
service_profile xsd:anyURI required
service categor xsd:anyURi required
service, type xsd:anyUR! required

element ServicelnterfaceAuthorizationResponse/access_policy

hitp://www.nemo-community.com/schemas/nemo/nsdl/’2003/08/core/sve/ext/01

vpe ngdisPolicy

id xsd:anyURI optional
description xsd:string optional

US 9,466,054 B1
105 106

complexType UDDIBasedServiceDiscovery

[iteroce B

0.

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/01

extension of Servicaliscovery

interisee aifribute

id

xsd:anylRi optional
description xsd:string optional
service profile xsd:anyURI required
service_categor xsd:anyURI required
¥
service_type xsdh:anyURL required

complexType UDDiIBasedServiceDiscoveryRequest

hitp://www.nemo-comrunity.com/schemas/nemo/nsdi/2003/08/core/sve/ext/01

extension of ngdic: ServicePavioad

saarcheriteria

id xsd:anyURI <;pt|onal
description xsd:string optional

element UDDIBasedServiceDiscoveryRequest/searchcriteria

vy

hitp://Awww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01

woe URRIKevedRsferencse

imodsikey keyvalus

! U
id xsd:anyURI optional
description xsd:string optional

US 9,466,054 B1
107 108

complexType UDDiBasedServiceDiscoveryResponse

(UI][IIBasedSeruicel]iscoueryRes...]

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01
wpe extension of pedie:ServiceFayioad

servige

N Typs
id xsd:anylUR] optional
description xsd:string optional

element UDDIBasedServiceDiscoveryResponse/service

o

hitp://www.nemo-community.com/schemas/nemo/nsdiV2003/09/core/sve/ext/01

nsdis:Servicelnde

interface atribute
BN

% d) xsd:ényUF(I dphonal
description xsd:string optional
service profile xsd:anyURI required
service_categor xsd:anyURI required
service_type xsd:anyURI required

complexType UDDiKeyedReference

a

hitp://www.nemo-community. com/schemas/nemo/nsdlif2003/09/core/sve/ext/O1

exiension of nsdic:Base

wnodeikey keyvalug

o

UDDIBasedSenviceRiscoveryRequastisearghoriteria
Namea

id xsd:ényURI c;ptfonal
description xsd:string optional

y

US 9,466,054 B1
109

element UDDIKeyedReference/tmodelkey

Ftmodelkey |

http:/Awww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/O1

xsd:string

element UDDIKeyedReference/keyvalue

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01

extension of PeerBiscovery
interface atfribute
& Ty Lisg Foxadd
id xsd:anyURI optional
description xsd:string optional
service _profile xsd:anyURI required
service categor xsd:anyURI required
¥
service_type xsd:anyURI required

complexType UPnPPeerDiscoveryRequest

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/08/core/svelext/01

extension of ngdig:ServicePavioad

newsearch searchmethod searehtarget searchdata

"

Uae

id xsd:anyURI optional
description xsd:string optional

110

US 9,466,054 B1
111

112

element UPnPPeerDiscoveryRequest/inewsearch

hitp//www.nemao-community. com/schemas/nemo/nsd2003/08/core/sve/ext/01
xsd:boolean

element UPnPPeerDiscoveryRequest/searchmethod

" searchimethod |

http://www.nemo-community.com/schemas/nemo/nsadl2003/08/corefsve/ext/01
UPnPPeorSearchifsthod

M-SEARCH

element UPnPPeerDiscoveryRequest/searchitarget

hitp://www.nemo-community.com/schemas/nemo/nsdy2003/08/core/sve/ext/01
UsnPRearBsarchTarget

ALL

ROOTDEVICE
DEVICETYPE

element UPnPPeerDiscoveryRequest/searchdata

hitp//www.nemo-community.com/schemas/nemo/nsdi/2003/09/core/sve/ext/01
xsd:string

complexType UPnPPeerDiscoveryResponse

(lanPPeerﬂiscnueryResponse _‘

0.
hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/08/core/sve/ext/01
extension of gedig:ServicaPayinsd
id xsd:anyURI optional
description xsd:string optional
simpleType UPnPPeerSearchMethod

hitp:/iwww.nemo-community.com/schemas/nemo/nsdl/2003/09/core/sve/ext/01
restriction of xsd:string

3 URnPPeerBiscoveryRBequest/searshmethod

M-SEARCH

US 9,466,054 B1

113 114

simpleType UPnPPeerSearchTarget
& http//’www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc/ext/O1

restriction of xsd:string
UPnPPearDiscovaryBequastsearchitarget

ALL
ROOTDEVICE
DEVICETYPE

complexType CryptoKeyinfo

<

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm

extension of nsdic: Bass

id) X8 .ényURI dp ional
description xsd:string optional

element CryptoKeylnfo/encrypted

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/08/drm

xsd:boolean

http://www.nemo-community.com/schemas/nemo/nsd/2003/08/drm

iype extension of sadic: Bass

privatekey publickey
DevisedGotopusodeicontantprotestionksy BeviceAQclopysNodeisacrainrolectionkey

id xéd:ényURl d‘pti‘onal
description xsd:string optional

element CryptoKeyinfoPair/privatekey

<

—

privatekey

http://mww.nemo-community.com/schemas/nemo/nsdl/2003/09/drm

CrvetoKayinie
enerypied

US 9,466,054 B1
115 116

'
(e

xsd:ényURl optional
description xsd:string optional

CryptoKeyinfoPair/publickey

am

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm
CrypioXeyink
encrynted

LS

id xsd:anyURI optional

description xsd:string aptional
complexType DRMIinfo

http:/Awvww.nemo-community.com/schemas/nemo/nsdl/2003/09/drm

extension of psdic: Base

Barsonatitwdmuinie Lisense/drninfo MenbershipTokenddrminio
OctopusPRMIno

xsc:anyURI optional
description xsd:string optional

complexType License

| G)

0.

hitp:/Awww.nemo-community.com/schemas/nemo/nsdl/2003/09/drm

extension of nagdic:Base

drminfo
Qoiopusiicenss

Type Lee
xsd:anyURI optional
description xsd:string optional

element License/drminfo

i S1AN

http:/fwww.nemo-community. com/schemas/nemo/nsdl/2003/09/dm

v DRMinie

Name

id xsd:ényURI optional
description xsd:string optional

Use

US 9,466,054 B1
118

117

complexType MembershipToken
: : (Memhershianken E}—@]—-E-&;Hi_ﬁfn—?

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm

extension of nadic: Rass

grpinfo
i GelopusMembershinToken

xS :ényURI optional
xsd:string optional

description

element MembershipToken/drminfo

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm

PRMInie
id . xéa::anyURI optional
description xsd:string optional

complexType Personality

hitp://www.nemo-community.com/schemas/nemo/nsd|/2003/09/drm

extension of nedic:Bass

yna
o drminde
DctopusPersonality
Use

ksd:anyURI optional
xsd:string optional

id
description

element Personality/drminfo

hitp://www.nemo-community.com/schemas/nermo/nsdi/2003/08/drm

Use

BRMinfo
id ' xéd:ényURI optional
description xsd:string optional

complexType LicenseAcquisition

T

Q

(Licensencquisi(ion

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc

extension of ngdic:Servicsinio

US 9,466,054 B1
119 120

Namg Tyos

id xsd:anyURI optional
description xsd:string optional
service_profile xsd:anyURI required
service,_categor xsd:anyURI required
y

service_type xsd:anyURI required

complexType LicenseTranslation

LicenseTranslation

http://www.nemo-community.com/schemas/nemo/nsd/2003/09/drm/svc
extension of nsdic: Barviceinfe

interfage aittibute

BetopusticenseTransiation

Ty tisa

N

id xéd:anyURI optional
description xsd:string optional
service. profile xsd:anyURI required
service_categor xsd:anyUR| required
¥

service_type xsd:anyURI required

complexType MembershipTokenAcquisition

(MemhershipTokenAcquisition -

-+ attribute [f]

0.

http:/iwww.nerno-community.com/schemas/nemo/nsdi/2003/09/drm/sve

extension of nadic: Serviceinte

interfaos atiributs

N S Use Fivad
id xsd:anyUR] optianal
description xsd:string optional
service,_profile xsd:anylRI required
service_categor xsd:anyURI required

y
service_type xsd:anyURi required

US 9,466,054 B1
121 122

complexType Personalization

 attribute

0.0

hitp://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc
e extension of pedic: Servigsinio

interface attribute

QeotonusPersonalizstion

h] Type Use

id xsd:anyURI optional
description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required
Y

service_type xsd:anyURI required

element OctopusPersonalization

o

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc/ext/octopus

QctopusPorsonalization

interfacs altributs

id xsd:ényURI optional)
description xsd:string optional
service,_profile xsd:anyURI required
service_categor xsd:anyURI required

Y

service_type xsd:anyURI required

complexType DeviceAOctopusNode

contentprotectionikey

hitp:/fwww.nemo-community.com/schemas/nemo/nsdl/2003/08/drmy/sve/ext/octopus

extension of GeispusNods

santeniproteciionkey sscretprotectionkey

H Use
xsd:anyURI optional
description xsd:string optional
nodetype xsd:anyURI

US 9,466,054 B1
123 124

element DeviceAQctopusNode/contentprotectionkey

privatekey

publickey

http://www.nemo-community.com/schemas/nemo/nsd|/2003/09/drm/svc/ext/octopus
CrypioKeyinfoPair
privatekey publickey

N Tyoe Use
id xsd:anyURE optional
description xsd:string optional

contentprotectionkey ——nu—

kel

Ay

element Device AOctopusNode/secretprotectionkey

[secretprotectionkey [

hitp://www.nemo-community.com/schemas/nemo/nsd/2003/08/drm/svc/ext/octopus
CrypioevinfoPair
gprivatekey publickey

Name s

id xsd:anyURI optional
description xsd:string optional

nE s

complexType OctopusDRMinfo

o

OctopusDRMInfo |

hitp://www.nemo-community.com/schemas/nemao/nsdl/2003/08/dnm/sve/ext/actopus

extension of BRMin{o

N 7 Uaga
id xsd:anyUR{ optional
description xsd:string optional

complexType Octopuslicense

Qectopuslicense

hitp://www.nemo-community.com/schemas/nemo/nsd/2003/09/dm/sve/ext/octopus

extension of License

grminio

Nama T ga

id xsd:anyURI optional
description xsd:string optional

US 9,466,054 B1
125 126

complexType OctopusLicenseAcquisition

(OctopusLicenseAcquisition c
‘ ‘ attribute

ades

hitp://www.nemo-community.com/schemas/nemo/nsd|/2003/09/drm/svc/ext/octopus

extension of Licensafcquisition

interface attvibute

Name Typsa Use

id xsd:anyURI optional
description xsd:string opticnal
service _profile xsd:anyURI required
service categor xsd:anyURI required
Y

service_type xsd:anyURI required

complexType OctopuslicenseAcquisitionRequest

(octopusLicenseAcquisitionReq... EH{ e+

hitp//vww.nemo-community.com/schemas/nemo/nsdl/2003/69/dmm/sve/ext/octopus

wpe extension of nedic:ServicePavioad

Nama 3 Wisg
id xsd:anyUR! optional
description xsd:atring opticnal

complexType OctopuslicenseAcquisitionResponse

http://www.nemo-community. com/schemas/nemo/nsdif2003/09/dm/sve/ext/octopus

extension of psdic: BervicePayisad

Ty

id ’ xsd.ényURl optional
description xgd:string opticnal

complexType OctopuslicenseTranslation

@ctopusLicenseTranslation i ”

--3 attribute []

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc/ext/octopus

US 9,466,054 B1
127 128

ivpe extension of LicenesTransiation

interface ativibute
id xsd:anyURI optional
description xsd:string cptional
service_profile xsd:anyURI required
service_categor xsd:anyURI required
y
service_type xsd:anyURi required

complexType OctopusLicenseTranslationRequest

hitp:/imww.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc/ext/octopus

extension of nedic: ServicePadoad

id d:anyURI optional
description xsd:string aptional

R

complexType OctopusLicenseTransiationResponse

(OctopusLicenseTranslatianﬂ'.es... E—:H-@EI-

http://www.nemo-community.com/schemas/nemo/nsdi/2003/09/dm/svc/ext/octopus
yvpe extension of pediciSenvicePavioad

. R J 3 Uine
id xsd:anyURI optional
description xsd:string optional

complexType OctopusMembershipToken

(OctopusMembershipToken M -E_ d-r;m_n_f—o- 1:':

: b

Ly

0. ’

hiip://www.nemo-community.com/schemas/nemo/nsdli/2003/09/drm/sve/ext/octopus
extension of MembsrshisToken
drminto

5\: >y

i ' X8 .WanyURI bpﬁonal
description xsd:string optional

US 9,466,054 B1
129 130

complexType OctopusNode

- t OctopuzNode

http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc/ext/octopus

extension of ngdic:Bass

GelopusPersonalizationResponse/personaiitynods
Bgavic@kﬂamgusmaﬁe

Uae

id

XS .ényURI optional
description xsd:string optional
nodetype xsd:anyURI

complexType OctopusPersonality
&

N

@topusPersonali‘ly =

http://www.nema-community.com/schemas/nemo/nsdl/2003/09/drm/svc/ext/octopus

extension of Pgrgenatity

drmindo
N : 3 A
id xsd:anyURI optional
description xsd:string optional

complexType OctopusPersonalization

l‘-w: attribute

.

hitp://Avww.nemo-community.com/schemas/nemo/nad/2003/09/dmm/svc/ext/octapus

extension of Perssnalization

interface ativibute
DotopusPersonatization

? s tise Ary
id xsd:anyURI optional
description xsd:string optional
service_profile xsd:anyURI required
service_categor xsd:anyURI required

¥
service type xsd:anyURI required

US 9,466,054 B1

131 132

complexType OctopusPersonalizationRequest

hitp//www.nemo-community.com/schemas/nemo/nsdl/2003/09/drm/svc/ext/octopus

fvpe extension of ngdio: ServicePavioad

oh identite
d xsd:anyUR optional
description xsd:string optional

element OctopusPersonalizationRequest/identity

x50%certdala

A i

id x :anyUR| optional
description xsd:string optional

http://www.nemo-community. com/schemas/nemo/nsdliy2003/08/drm/sve/ext/octopus
extension of nadic:ServicePavioad
parsonalitynode

xsd:ényURl 6pﬁona!
description xsd:string optional

slement OctopusPersonalizationResponse/personalitynode

; personalitynode |

http:/fwww.nemao-community.com/schemas/nemo/nsdl/2003/08/drm/sve/ext/octopus
OctopusNode

N

)

id‘);sd:ényu RI optional
description xsd:string optional
nodetype xsd:anyURI

US 9,466,054 B1
133 134

Profile Schemas

Core Profile

Clwsinemoachemanismoe-schema-core-01.xed
http://www.nemo-community.com/schemas/nemo/nsdi/2003/09/core

e

Messagelsage

Base Base
Evidence
interfaceBingding
Nods
Nodaidentitvinfe
Poligy
Servicedtiribute
ServicsAttribytsValue
Saryigelnfo
ServiceMessags
ServicsPavioad
Blatus

TargetCriteria
Core Profile Extension

S wsinemsischemainemoe-schema-core-exiension-1 xsd
http:/Awww.nemo-community.com/schemas/nemo/nsdi/2003/09/core/ext/01

XDy

.G STV
NodaldentitvinfoTargeiCriteria
BeferenceNodeidentiivinfe
SAML AssertionBvidence
SAML AssertionPolicy
Simpleldidentitvinio

SimpleMamedNode
SimpleProperiviyneTargetGriteeis

SimpleSeriaiumberNodsidentitvinie
SimgleServiceTvneTargiGriteria
StringServiceAltributeVaiue
WehServiceinterfaceBinding
WebServicsinterfacaBindingl iterat

WaPolicyassertionSvidence
WEPslicyAssartionFolicy

X509Certificateldantitvinie

Core Service Profile

Clwsinemo\schemainemp-schema-core-service-01.x8d
http://www.nemo-community.com/schemas/nemo/nsdl/2003/09/core/svc

Compax epes
Authorization
Notification
Peerliscovery
ServiceDiscovery

US 9,466,054 B1
135 136

Core Service Profile Extension

Crhwsinemo\schemainemo-schema-core-servige-extension-01.xsd
http:/www.nemo-community.com/schemas/nemo/nsdi/2003/09/core/svc/ext/01

UPnPPearSearchMathod
AtirsE}uteSaﬁed§ewecemacwemﬁegues’t UPnPPesrSearchiargst
AtributeRBasedServiceDiscovervResponss

Serviceinterfaceduthorization
ServiceinterfacedutharizationRequest
ServicsinterfacsduthorizationRespanss

UDBassdServicalliscovery
UDDiBasedBearviceRiscoveryReguest

UDDIBsssdServiceDiseovaryResponse
UDDIXeyadReferense

UPnPPesrDisouvery
UPSPPeestsmver Best

DRM Profile

Clwshemolschemaneno-sehema-donegixsd
http://www.nemo-community.com/schemas/nemo/nsd|/2003/09/drm

mm
CriptoXevinfaPair
DRMinfo

Licenss
MembershipToken
Personaiily

DRM Profile Extension

Chws\inemo\schema\neme-sshema-drm-exiension-0i.xsd

http: ./ Anemo-community. com/schemas/nemo/nsdl/2003/09/drm/ext/01

DRM Service Profile

Chwsinemoisshemaineme-schema-drm-ssrvice-81 xsd
http://www.nemo-community.com/schemas/nemo/nsd|/2003/09/drm/svc

Gomplax types
Lscense&eguasaﬁm
LicenseTransiation

MembershipTokendcguisition
Personalization

137

US 9,466,054 B1

Octopus DRM Profile

o

Slavants
LRENE

QetopusPersonalization

138

Caws\nemo\schema\neme-schema-dri-service-extension-octopus.asd

Complex types
ReviceAQctopushiade
SctopusDiiinfo

Cetopusticense
Cctonusl.icensedoguisition
CotopushicensefequisitionRequast
QctopusticenseAcguisitionResponse

CotopuslicenssTransiation

QctopusticenseTransiationRegueast
Oetopush.icenseTransiationBesponse
CotopusiembershipToken
Ceolopushode

OgtopusPersonality
CctopusPersonalization
DeotopusPersonalizstionReguest
GetopuasPeraonaiizationBesponse

http://www.nemo-community.com/schemas/nemo/nsd|/2003/09/drm/svc/ext/octopus

US 9,466,054 B1

139

Although the foregoing has been described in some detail
for purposes of clarity, it will be apparent that certain
changes and modifications may be practiced within the
scope of the appended claims. It should be noted that there
are many alternative ways of implementing both the pro-
cesses and apparatuses of the present inventions. Accord-
ingly, the present embodiments are to be considered as
illustrative and not restrictive, and the inventive body of
work is not to be limited to the details given herein, but may
be modified within the scope and equivalents of the
appended claims.

What is claimed is:
1. A computing device comprising:
one or more processors, and
a non-transitory computer readable memory containing
instructions that, when executed by the one or more
processors, cause the one or more processors to per-
form operations including:
operating a host application, a computing device node
application that communicates with a gateway
device, a digital rights management engine (DRM
engine), and a cryptographic services module dis-
tinct from the DRM engine;
receiving, by the computing device node application
from the gateway device, a license for an encrypted
content object comprising license instructions, the
encrypted content object, an encrypted crypto-
graphic key for decrypting the encrypted content
object, and a set of link objects;
querying an authorization graph by executing, using the
DRM engine, the license instructions and determin-
ing an existence of a first path on the authorization
graph from the computing device node application to
an authorization node by processing two or more link
objects from the set of link objects;
decrypting the encrypted cryptographic key for
decrypting the encrypted content object using the
DRM engine and the cryptographic services module,
decryption comprising:
processing, using the DRM engine, a chain of link
objects, from the set of link objects, connecting
the computing device node application to a target
node through a second path on the authorization
graph that includes an intermediate node, and
retrieving encrypted cryptographic keys contained
in the link objects of the chain of link objects, the
encrypted cryptographic keys including an
encrypted cryptographic key of the intermediate
node and an encrypted cryptographic key of the
target node,
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key of the intermediate node using
a cryptographic key of the computing device node
application,
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key of the target node using the
cryptographic key of the intermediate node, and
based on a result of querying the authorization graph:
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key for decrypting the encrypted
content object using the cryptographic key of the
target node,

15

20

25

40

45

50

55

140

providing, by the DRM engine to the host applica-
tion, the cryptographic key for decrypting the
encrypted content object,
decrypting, using the cryptographic services module
interacting with the host application, the encrypted
content object using the cryptographic key for
decrypting the encrypted content object, and
accessing the content object using the host applica-
tion interacting with the cryptographic services
module.
2. The computing device of claim 1, wherein the opera-
tions further include:
providing, by the computing device node application to
the gateway device, a digitally-signed personalization
request message identifying the computing device;

receiving, by the computing device node application from
the gateway device in response to the digitally-signed
personalization request message, a personalization
message;

associating, by the computing device node application

and in response to the personalization message, the
cryptographic key of the computing device node appli-
cation with the computing device node application.

3. The computing device of claim 2, wherein the digitally-
signed personalization request message includes a digital
certificate associated with the computing device.

4. The computing device of claim 1, wherein the com-
puting device node application communicates with the gate-
way device over a personal area network.

5. The computing device of claim 1, wherein the com-
puting device node application communicates with the gate-
way device using a service access point that accesses web
services exposed by the gateway device.

6. The computing device of claim 1, wherein the com-
puting device comprises a portable media player.

7. The computing device of claim 1, wherein a link object
of the intermediate node connects a “from” node to the
intermediate node.

8. The computing device of claim 7, wherein the
encrypted cryptographic key of the intermediate node
includes a private key of the intermediate node encrypted
with a public key of the “from” node.

9. The computing device of claim 1, wherein the DRM
engine comprises a virtual machine and executing the
license instructions comprises using the virtual machine to
execute the license instructions.

10. The computing device of claim 1, wherein the instruc-
tions comprise byte code, and executing the license instruc-
tions comprises executing the byte code.

11. A computer-implemented method comprising,

operating, using at least one processor of a computing

device, a host application, a computing device node
application that communicates with a gateway device,
a DRM engine, and a cryptographic services module
distinct from the DRM engine;

receiving, by the computing device node application from

the gateway device, a license for an encrypted content
object comprising license instructions, the encrypted
content object, an encrypted cryptographic key for
decrypting the encrypted content object, and a set of
link objects;

querying an authorization graph by executing, using the

DRM engine, the license instructions and determining,
using the DRM engine, an existence of a first path on
the authorization graph from the computing device
node application to an authorization node by processing
two or more link objects from the set of link objects;

US 9,466,054 B1

141

decrypting the encrypted cryptographic key for decrypt-
ing the encrypted content object using the DRM engine
and the cryptographic services module, decryption
comprising:
processing, using the DRM engine, a chain of link
objects, from the set of link objects, connecting the
computing device node application to a target node
through a second path on the authorization graph that
includes an intermediate node, and retrieving, using
the DRM engine, encrypted cryptographic keys con-
tained in the link objects of the chain of link objects,
the encrypted cryptographic keys including an
encrypted cryptographic key of the intermediate
node and an encrypted cryptographic key of the
target node,
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key of the intermediate node using a
cryptographic key of the computing device node
application,
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key of the target node using the cryp-
tographic key of the intermediate node, and
based on a result of querying the authorization graph:
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key for decrypting the encrypted con-
tent object using the cryptographic key of the target
node,
providing, by the DRM engine to the host application,
the cryptographic key for decrypting the encrypted
content object,
decrypting, using the cryptographic services module
interacting with the host application, the encrypted
content object using the cryptographic key for
decrypting the encrypted content object, and
accessing the content object using the host application
interacting with the cryptographic services module.
12. The method of claim 11, wherein the method further
includes:
providing, by the computing device node application to
the gateway device, a digitally-signed personalization
request message identifying the computing device;

receiving, by the computing device node application from
the gateway device in response to the digitally-signed
personalization request message, a personalization
message;

associating, by the computing device node application

and in response to the personalization message, the
cryptographic key of the computing device node appli-
cation with the computing device node application.

13. The method of claim 11, wherein the computing
device comprises a portable media player, and wherein the
computing device node application communicates with the
gateway device over a personal area network.

14. The method of claim 11, wherein the computing
device node application communicates with the gateway
device using a service access point that accesses web
services exposed by the gateway device.

15. The method of claim 11, wherein a link object of the
intermediate node connects a “from” node to the interme-
diate node and wherein the encrypted cryptographic key of
the intermediate node includes a private key of the interme-
diate node encrypted with a public key of the “from” node.

16. The method of claim 11, wherein the DRM engine
comprises a virtual machine, the license instructions com-

10

15

20

25

30

35

40

45

50

55

60

142

prise byte code, and executing the license instructions com-
prises using the virtual machine to execute the byte code.
17. A non-transitory computer readable medium contain-
ing instructions that, when executed by one or more pro-
cessors of a computing device, cause the one or more
processors to perform operations including:
operating a host application, a computing device node
application that communicates with a gateway device,
a DRM engine, and a cryptographic services module
distinct from the DRM engine;
receiving, by the computing device node application from
the gateway device, a license for an encrypted content
object comprising license instructions, the encrypted
content object, an encrypted cryptographic key for
decrypting the encrypted content object, and a set of
link objects;
querying an authorization graph by executing, using the
DRM engine, the license instructions and determining
an existence of a first path on the authorization graph
from the computing device node application to an
authorization node by processing two or more link
objects from the set of link objects;
decrypting the encrypted cryptographic key for decrypt-
ing the encrypted content object using the DRM engine
and the cryptographic services module, decryption
comprising:
processing, using the DRM engine, a chain of link
objects, from the set of link objects, connecting the
computing device node application to a target node
through a second path on the authorization graph that
includes an intermediate node, and to retrieving
encrypted cryptographic keys contained in the link
objects of the chain of link objects, the encrypted
cryptographic keys including an encrypted crypto-
graphic key of the intermediate node and an
encrypted cryptographic key of the target node,
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key of the intermediate node using a
cryptographic key of the computing device node
application,
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key of the target node using the cryp-
tographic key of the intermediate node, and
based on a result of querying the authorization graph:
decrypting, using the cryptographic services module
interacting with the DRM engine, the encrypted
cryptographic key for decrypting the encrypted con-
tent object using the cryptographic key of the target
node,
providing, by the DRM engine to the host application,
the cryptographic key for decrypting the encrypted
content object,
decrypting, using the cryptographic services module
interacting with the host application, the encrypted
content object using the cryptographic key for
decrypting the encrypted content object, and
accessing the content object using the host application
interacting with the cryptographic services module.
18. The medium of claim 17, wherein the operations
further include:
providing, by the computing device node application to
the gateway device, a digitally-signed personalization
request message identifying the computing device;

US 9,466,054 B1
143 144

receiving, by the computing device node application from
the gateway device in response to the digitally-signed
personalization request message, a personalization
message;

associating, by the computing device node application 5

and in response to the personalization message, the
cryptographic key of the computing device node appli-
cation with the computing device node application.

19. The medium of claim 17, wherein the computing
device node application communicates with the gateway 10
device using a service access point that accesses web
services exposed by the gateway device.

20. The medium of claim 17, wherein a link object of the
intermediate node connects a “from” node to the interme-
diate node and wherein the encrypted cryptographic key of 15
the intermediate node includes a private key of the interme-
diate node encrypted with a public key of the “from” node.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,466,054 B1 Page 1of1
APPLICATION NO. : 11/829837

DATED - October 11, 2016

INVENTOR(S) : William Bradley, David Maher and Gilles Boccon-Gibod

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

At Column 142, Line 33, Claim 17, “and to retrieving” should read --and retrieving--.

Signed and Sealed this
Tenth Day of January, 2017

Decbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

